Cargando…
Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data
One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gather...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231709/ https://www.ncbi.nlm.nih.gov/pubmed/22164028 http://dx.doi.org/10.3390/s100807476 |
_version_ | 1782218269484122112 |
---|---|
author | Molina, Iñigo Morillo, Carmen García-Meléndez, Eduardo Guadalupe, Rafael Roman, Maria Isabel |
author_facet | Molina, Iñigo Morillo, Carmen García-Meléndez, Eduardo Guadalupe, Rafael Roman, Maria Isabel |
author_sort | Molina, Iñigo |
collection | PubMed |
description | One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ(0)). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r(2) = 0.88). In turn, when effective LAI (LAI(eff)) has been taken into account, the parameters of the scattering canopy model are better estimated (r(2) = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values. |
format | Online Article Text |
id | pubmed-3231709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-32317092011-12-07 Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data Molina, Iñigo Morillo, Carmen García-Meléndez, Eduardo Guadalupe, Rafael Roman, Maria Isabel Sensors (Basel) Article One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ(0)). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r(2) = 0.88). In turn, when effective LAI (LAI(eff)) has been taken into account, the parameters of the scattering canopy model are better estimated (r(2) = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values. Molecular Diversity Preservation International (MDPI) 2011-07-28 /pmc/articles/PMC3231709/ /pubmed/22164028 http://dx.doi.org/10.3390/s100807476 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Molina, Iñigo Morillo, Carmen García-Meléndez, Eduardo Guadalupe, Rafael Roman, Maria Isabel Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data |
title | Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data |
title_full | Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data |
title_fullStr | Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data |
title_full_unstemmed | Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data |
title_short | Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data |
title_sort | characterizing olive grove canopies by means of ground-based hemispherical photography and spaceborne radar data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231709/ https://www.ncbi.nlm.nih.gov/pubmed/22164028 http://dx.doi.org/10.3390/s100807476 |
work_keys_str_mv | AT molinainigo characterizingolivegrovecanopiesbymeansofgroundbasedhemisphericalphotographyandspaceborneradardata AT morillocarmen characterizingolivegrovecanopiesbymeansofgroundbasedhemisphericalphotographyandspaceborneradardata AT garciamelendezeduardo characterizingolivegrovecanopiesbymeansofgroundbasedhemisphericalphotographyandspaceborneradardata AT guadaluperafael characterizingolivegrovecanopiesbymeansofgroundbasedhemisphericalphotographyandspaceborneradardata AT romanmariaisabel characterizingolivegrovecanopiesbymeansofgroundbasedhemisphericalphotographyandspaceborneradardata |