Cargando…
Enhanced Precision Time Synchronization for Wireless Sensor Networks
Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231711/ https://www.ncbi.nlm.nih.gov/pubmed/22164035 http://dx.doi.org/10.3390/s110807625 |
_version_ | 1782218269938155520 |
---|---|
author | Cho, Hyuntae Kim, Jongdeok Baek, Yunju |
author_facet | Cho, Hyuntae Kim, Jongdeok Baek, Yunju |
author_sort | Cho, Hyuntae |
collection | PubMed |
description | Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol. |
format | Online Article Text |
id | pubmed-3231711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-32317112011-12-07 Enhanced Precision Time Synchronization for Wireless Sensor Networks Cho, Hyuntae Kim, Jongdeok Baek, Yunju Sensors (Basel) Article Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol. Molecular Diversity Preservation International (MDPI) 2011-08-02 /pmc/articles/PMC3231711/ /pubmed/22164035 http://dx.doi.org/10.3390/s110807625 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Cho, Hyuntae Kim, Jongdeok Baek, Yunju Enhanced Precision Time Synchronization for Wireless Sensor Networks |
title | Enhanced Precision Time Synchronization for Wireless Sensor Networks |
title_full | Enhanced Precision Time Synchronization for Wireless Sensor Networks |
title_fullStr | Enhanced Precision Time Synchronization for Wireless Sensor Networks |
title_full_unstemmed | Enhanced Precision Time Synchronization for Wireless Sensor Networks |
title_short | Enhanced Precision Time Synchronization for Wireless Sensor Networks |
title_sort | enhanced precision time synchronization for wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231711/ https://www.ncbi.nlm.nih.gov/pubmed/22164035 http://dx.doi.org/10.3390/s110807625 |
work_keys_str_mv | AT chohyuntae enhancedprecisiontimesynchronizationforwirelesssensornetworks AT kimjongdeok enhancedprecisiontimesynchronizationforwirelesssensornetworks AT baekyunju enhancedprecisiontimesynchronizationforwirelesssensornetworks |