Cargando…
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it...
Autores principales: | Lee, Yung-Hsiang, Ho, Chung-Ru, Su, Feng-Chun, Kuo, Nan-Jung, Cheng, Yu-Hsin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231724/ https://www.ncbi.nlm.nih.gov/pubmed/22164030 http://dx.doi.org/10.3390/s110807530 |
Ejemplares similares
-
Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago
por: Caldwell, Jamie M., et al.
Publicado: (2016) -
Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST
por: Erfanian, Amir, et al.
Publicado: (2017) -
Tropical Indo-Pacific SST influences on vegetation variability in eastern Africa
por: Kim, In-Won, et al.
Publicado: (2021) -
The Record-breaking Mei-yu in 2020 and Associated Atmospheric Circulation and Tropical SST Anomalies
por: Ding, Yihui, et al.
Publicado: (2021) -
Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data
por: Lin, Chun-Yi, et al.
Publicado: (2008)