Cargando…
Construction of gene regulatory networks using biclustering and bayesian networks
BACKGROUND: Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last dec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231811/ https://www.ncbi.nlm.nih.gov/pubmed/22018164 http://dx.doi.org/10.1186/1742-4682-8-39 |
_version_ | 1782218285791576064 |
---|---|
author | Alakwaa, Fadhl M Solouma, Nahed H Kadah, Yasser M |
author_facet | Alakwaa, Fadhl M Solouma, Nahed H Kadah, Yasser M |
author_sort | Alakwaa, Fadhl M |
collection | PubMed |
description | BACKGROUND: Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. RESULTS: In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. CONCLUSIONS: Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods. |
format | Online Article Text |
id | pubmed-3231811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32318112011-12-07 Construction of gene regulatory networks using biclustering and bayesian networks Alakwaa, Fadhl M Solouma, Nahed H Kadah, Yasser M Theor Biol Med Model Research BACKGROUND: Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. RESULTS: In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. CONCLUSIONS: Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods. BioMed Central 2011-10-22 /pmc/articles/PMC3231811/ /pubmed/22018164 http://dx.doi.org/10.1186/1742-4682-8-39 Text en Copyright ©2011 Alakwaa et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Alakwaa, Fadhl M Solouma, Nahed H Kadah, Yasser M Construction of gene regulatory networks using biclustering and bayesian networks |
title | Construction of gene regulatory networks using biclustering and bayesian networks |
title_full | Construction of gene regulatory networks using biclustering and bayesian networks |
title_fullStr | Construction of gene regulatory networks using biclustering and bayesian networks |
title_full_unstemmed | Construction of gene regulatory networks using biclustering and bayesian networks |
title_short | Construction of gene regulatory networks using biclustering and bayesian networks |
title_sort | construction of gene regulatory networks using biclustering and bayesian networks |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231811/ https://www.ncbi.nlm.nih.gov/pubmed/22018164 http://dx.doi.org/10.1186/1742-4682-8-39 |
work_keys_str_mv | AT alakwaafadhlm constructionofgeneregulatorynetworksusingbiclusteringandbayesiannetworks AT soloumanahedh constructionofgeneregulatorynetworksusingbiclusteringandbayesiannetworks AT kadahyasserm constructionofgeneregulatorynetworksusingbiclusteringandbayesiannetworks |