Cargando…

Rheological and dielectric properties of different gold nanoparticle sizes

BACKGROUND: Gold nanoparticles (GNPs) have found themselves useful for diagnostic, drug delivery and biomedicine applications, but one of the important concerns is about their safety in clinical applications. Nanoparticle size has been shown to be an extremely important parameter affecting the nanop...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelhalim, Mohamed Anwar K, Mady, Mohsen M, Ghannam, Magdy M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231822/
https://www.ncbi.nlm.nih.gov/pubmed/22078458
http://dx.doi.org/10.1186/1476-511X-10-208
_version_ 1782218288106831872
author Abdelhalim, Mohamed Anwar K
Mady, Mohsen M
Ghannam, Magdy M
author_facet Abdelhalim, Mohamed Anwar K
Mady, Mohsen M
Ghannam, Magdy M
author_sort Abdelhalim, Mohamed Anwar K
collection PubMed
description BACKGROUND: Gold nanoparticles (GNPs) have found themselves useful for diagnostic, drug delivery and biomedicine applications, but one of the important concerns is about their safety in clinical applications. Nanoparticle size has been shown to be an extremely important parameter affecting the nanoparticle uptake and cellular internalization. The rheological properties assume to be very important as it affects the pressure drop and hence the pumping power when nano-fluids are circulated in a closed loop. The rheological and dielectric properties have not been documented and identified before. The aim of the present study was to investigate the rheology and the dielectric properties of different GNPs sizes in aqueous solution. METHODS: 10, 20 and 50 nm GNPs (Product MKN-Au, CANADA) was used in this study. The rheological parameters were viscosity, torque, shear stress, shear rate, plastic viscosity, yield stress, consistency index, and activation energy. These rheological parameters were measured using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. RESULTS: The shear stress and shear rate of GNPs have shown a linear relationship and GNPs exhibited Newtonian behaviour. The GNPs with larger particle size (50 nm) exhibited more viscosity than those with smaller particle sizes (10 and 20 nm). Viscosity decreased with increasing the temperature for all the examined GNP sizes. The flow behaviour index (n) values were nearly ≤ 1 for all examined GNP sizes. Dielectric data indicated that the GNPs have strong dielectric dispersion in the frequency range of 20-100 kHz. The conductivity and relaxation time decreased with increasing the GNP size. CONCLUSIONS: This study indicates that the GNP size has considerable influence on the viscosity of GNPs. The strong dielectric dispersion was GNP size dependent. The decrease in relaxation time might be attributed to increase in the localized charges distribution within the medium confirmed by the conductivity data. This study suggests that further experiments are required to be done after the administration of GNPs through different routes in rats in vivo.
format Online
Article
Text
id pubmed-3231822
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32318222011-12-12 Rheological and dielectric properties of different gold nanoparticle sizes Abdelhalim, Mohamed Anwar K Mady, Mohsen M Ghannam, Magdy M Lipids Health Dis Research BACKGROUND: Gold nanoparticles (GNPs) have found themselves useful for diagnostic, drug delivery and biomedicine applications, but one of the important concerns is about their safety in clinical applications. Nanoparticle size has been shown to be an extremely important parameter affecting the nanoparticle uptake and cellular internalization. The rheological properties assume to be very important as it affects the pressure drop and hence the pumping power when nano-fluids are circulated in a closed loop. The rheological and dielectric properties have not been documented and identified before. The aim of the present study was to investigate the rheology and the dielectric properties of different GNPs sizes in aqueous solution. METHODS: 10, 20 and 50 nm GNPs (Product MKN-Au, CANADA) was used in this study. The rheological parameters were viscosity, torque, shear stress, shear rate, plastic viscosity, yield stress, consistency index, and activation energy. These rheological parameters were measured using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. RESULTS: The shear stress and shear rate of GNPs have shown a linear relationship and GNPs exhibited Newtonian behaviour. The GNPs with larger particle size (50 nm) exhibited more viscosity than those with smaller particle sizes (10 and 20 nm). Viscosity decreased with increasing the temperature for all the examined GNP sizes. The flow behaviour index (n) values were nearly ≤ 1 for all examined GNP sizes. Dielectric data indicated that the GNPs have strong dielectric dispersion in the frequency range of 20-100 kHz. The conductivity and relaxation time decreased with increasing the GNP size. CONCLUSIONS: This study indicates that the GNP size has considerable influence on the viscosity of GNPs. The strong dielectric dispersion was GNP size dependent. The decrease in relaxation time might be attributed to increase in the localized charges distribution within the medium confirmed by the conductivity data. This study suggests that further experiments are required to be done after the administration of GNPs through different routes in rats in vivo. BioMed Central 2011-11-11 /pmc/articles/PMC3231822/ /pubmed/22078458 http://dx.doi.org/10.1186/1476-511X-10-208 Text en Copyright ©2011 Abdelhalim et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Abdelhalim, Mohamed Anwar K
Mady, Mohsen M
Ghannam, Magdy M
Rheological and dielectric properties of different gold nanoparticle sizes
title Rheological and dielectric properties of different gold nanoparticle sizes
title_full Rheological and dielectric properties of different gold nanoparticle sizes
title_fullStr Rheological and dielectric properties of different gold nanoparticle sizes
title_full_unstemmed Rheological and dielectric properties of different gold nanoparticle sizes
title_short Rheological and dielectric properties of different gold nanoparticle sizes
title_sort rheological and dielectric properties of different gold nanoparticle sizes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231822/
https://www.ncbi.nlm.nih.gov/pubmed/22078458
http://dx.doi.org/10.1186/1476-511X-10-208
work_keys_str_mv AT abdelhalimmohamedanwark rheologicalanddielectricpropertiesofdifferentgoldnanoparticlesizes
AT madymohsenm rheologicalanddielectricpropertiesofdifferentgoldnanoparticlesizes
AT ghannammagdym rheologicalanddielectricpropertiesofdifferentgoldnanoparticlesizes