Cargando…
Mining Relational Paths in Integrated Biomedical Data
Much life science and biology research requires an understanding of complex relationships between biological entities (genes, compounds, pathways, diseases, and so on). There is a wealth of data on such relationships in publicly available datasets and publications, but these sources are overlapped a...
Autores principales: | He, Bing, Tang, Jie, Ding, Ying, Wang, Huijun, Sun, Yuyin, Shin, Jae Hong, Chen, Bin, Moorthy, Ganesh, Qiu, Judy, Desai, Pankaj, Wild, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232205/ https://www.ncbi.nlm.nih.gov/pubmed/22162991 http://dx.doi.org/10.1371/journal.pone.0027506 |
Ejemplares similares
-
Finding Complex Biological Relationships in Recent PubMed Articles Using Bio-LDA
por: Wang, Huijun, et al.
Publicado: (2011) -
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
por: Koumakis, Lefteris, et al.
Publicado: (2016) -
PathText: a text mining integrator for biological pathway visualizations
por: Kemper, Brian, et al.
Publicado: (2010) -
Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data
por: Chen, Bin, et al.
Publicado: (2010) -
Navigating the path to a biomedical science career
por: Zimmerman, Andrea M.
Publicado: (2018)