Cargando…

Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans

BACKGROUND: The canine Gram-negative Helicobacter bizzozeronii is one of seven species in Helicobacter heilmannii sensu lato that are detected in 0.17-2.3% of the gastric biopsies of human patients with gastric symptoms. At the present, H. bizzozeronii is the only non-pylori gastric Helicobacter sp....

Descripción completa

Detalles Bibliográficos
Autores principales: Schott, Thomas, Kondadi, Pradeep K, Hänninen, Marja-Liisa, Rossi, Mirko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234257/
https://www.ncbi.nlm.nih.gov/pubmed/22039924
http://dx.doi.org/10.1186/1471-2164-12-534
_version_ 1782218495268749312
author Schott, Thomas
Kondadi, Pradeep K
Hänninen, Marja-Liisa
Rossi, Mirko
author_facet Schott, Thomas
Kondadi, Pradeep K
Hänninen, Marja-Liisa
Rossi, Mirko
author_sort Schott, Thomas
collection PubMed
description BACKGROUND: The canine Gram-negative Helicobacter bizzozeronii is one of seven species in Helicobacter heilmannii sensu lato that are detected in 0.17-2.3% of the gastric biopsies of human patients with gastric symptoms. At the present, H. bizzozeronii is the only non-pylori gastric Helicobacter sp. cultivated from human patients and is therefore a good alternative model of human gastric Helicobacter disease. We recently sequenced the genome of the H. bizzozeronii human strain CIII-1, isolated in 2008 from a 47-year old Finnish woman suffering from severe dyspeptic symptoms. In this study, we performed a detailed comparative genome analysis with H. pylori, providing new insights into non-pylori Helicobacter infections and the mechanisms of transmission between the primary animal host and humans. RESULTS: H. bizzozeronii possesses all the genes necessary for its specialised life in the stomach. However, H. bizzozeronii differs from H. pylori by having a wider metabolic flexibility in terms of its energy sources and electron transport chain. Moreover, H. bizzozeronii harbours a higher number of methyl-accepting chemotaxis proteins, allowing it to respond to a wider spectrum of environmental signals. In this study, H. bizzozeronii has been shown to have high level of genome plasticity. We were able to identify a total of 43 contingency genes, 5 insertion sequences (ISs), 22 mini-IS elements, 1 genomic island and a putative prophage. Although H. bizzozeronii lacks homologues of some of the major H. pylori virulence genes, other candidate virulence factors are present. In particular, we identified a polysaccharide lyase (HBZC1_15820) as a potential new virulence factor of H. bizzozeronii. CONCLUSIONS: The comparative genome analysis performed in this study increased the knowledge of the biology of gastric Helicobacter species. In particular, we propose the hypothesis that the high metabolic versatility and the ability to react to a range of environmental signals, factors which differentiate H. bizzozeronii as well as H. felis and H. suis from H. pylori, are the molecular basis of the of the zoonotic nature of H. heilmannii sensu lato infection in humans.
format Online
Article
Text
id pubmed-3234257
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32342572011-12-09 Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans Schott, Thomas Kondadi, Pradeep K Hänninen, Marja-Liisa Rossi, Mirko BMC Genomics Research Article BACKGROUND: The canine Gram-negative Helicobacter bizzozeronii is one of seven species in Helicobacter heilmannii sensu lato that are detected in 0.17-2.3% of the gastric biopsies of human patients with gastric symptoms. At the present, H. bizzozeronii is the only non-pylori gastric Helicobacter sp. cultivated from human patients and is therefore a good alternative model of human gastric Helicobacter disease. We recently sequenced the genome of the H. bizzozeronii human strain CIII-1, isolated in 2008 from a 47-year old Finnish woman suffering from severe dyspeptic symptoms. In this study, we performed a detailed comparative genome analysis with H. pylori, providing new insights into non-pylori Helicobacter infections and the mechanisms of transmission between the primary animal host and humans. RESULTS: H. bizzozeronii possesses all the genes necessary for its specialised life in the stomach. However, H. bizzozeronii differs from H. pylori by having a wider metabolic flexibility in terms of its energy sources and electron transport chain. Moreover, H. bizzozeronii harbours a higher number of methyl-accepting chemotaxis proteins, allowing it to respond to a wider spectrum of environmental signals. In this study, H. bizzozeronii has been shown to have high level of genome plasticity. We were able to identify a total of 43 contingency genes, 5 insertion sequences (ISs), 22 mini-IS elements, 1 genomic island and a putative prophage. Although H. bizzozeronii lacks homologues of some of the major H. pylori virulence genes, other candidate virulence factors are present. In particular, we identified a polysaccharide lyase (HBZC1_15820) as a potential new virulence factor of H. bizzozeronii. CONCLUSIONS: The comparative genome analysis performed in this study increased the knowledge of the biology of gastric Helicobacter species. In particular, we propose the hypothesis that the high metabolic versatility and the ability to react to a range of environmental signals, factors which differentiate H. bizzozeronii as well as H. felis and H. suis from H. pylori, are the molecular basis of the of the zoonotic nature of H. heilmannii sensu lato infection in humans. BioMed Central 2011-10-31 /pmc/articles/PMC3234257/ /pubmed/22039924 http://dx.doi.org/10.1186/1471-2164-12-534 Text en Copyright ©2011 Schott et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Schott, Thomas
Kondadi, Pradeep K
Hänninen, Marja-Liisa
Rossi, Mirko
Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans
title Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans
title_full Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans
title_fullStr Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans
title_full_unstemmed Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans
title_short Comparative Genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans
title_sort comparative genomics of helicobacter pylori and the human-derived helicobacter bizzozeronii ciii-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric helicobacter infections in humans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234257/
https://www.ncbi.nlm.nih.gov/pubmed/22039924
http://dx.doi.org/10.1186/1471-2164-12-534
work_keys_str_mv AT schottthomas comparativegenomicsofhelicobacterpyloriandthehumanderivedhelicobacterbizzozeroniiciii1strainrevealthemolecularbasisofthezoonoticnatureofnonpylorigastrichelicobacterinfectionsinhumans
AT kondadipradeepk comparativegenomicsofhelicobacterpyloriandthehumanderivedhelicobacterbizzozeroniiciii1strainrevealthemolecularbasisofthezoonoticnatureofnonpylorigastrichelicobacterinfectionsinhumans
AT hanninenmarjaliisa comparativegenomicsofhelicobacterpyloriandthehumanderivedhelicobacterbizzozeroniiciii1strainrevealthemolecularbasisofthezoonoticnatureofnonpylorigastrichelicobacterinfectionsinhumans
AT rossimirko comparativegenomicsofhelicobacterpyloriandthehumanderivedhelicobacterbizzozeroniiciii1strainrevealthemolecularbasisofthezoonoticnatureofnonpylorigastrichelicobacterinfectionsinhumans