Cargando…

Rapamycin Combined with Anti-CD45RB mAb and IL-10 or with G-CSF Induces Tolerance in a Stringent Mouse Model of Islet Transplantation

BACKGROUND: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg) cells. Among the various Treg-cell types, Foxp...

Descripción completa

Detalles Bibliográficos
Autores principales: Gagliani, Nicola, Gregori, Silvia, Jofra, Tatiana, Valle, Andrea, Stabilini, Angela, Rothstein, David M., Atkinson, Mark, Roncarolo, Maria Grazia, Battaglia, Manuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235119/
https://www.ncbi.nlm.nih.gov/pubmed/22174806
http://dx.doi.org/10.1371/journal.pone.0028434
Descripción
Sumario:BACKGROUND: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg) cells. Among the various Treg-cell types, Foxp3(+)Treg and IL-10–producing T regulatory type 1 (Tr1) cells have frequently been associated with tolerance following transplantation in both mice and humans. Previously, we demonstrated that rapamycin+IL-10 promotes Tr1-cell–associated tolerance in Balb/c mice transplanted with C57BL/6 pancreatic islets. However, this same treatment was unsuccessful in C57BL/6 mice transplanted with Balb/c islets (classified as a stringent transplant model). We accordingly designed a protocol that would be effective in the latter transplant model by simultaneously depleting effector T cells and fostering production of Treg cells. We additionally developed and tested a clinically translatable protocol that used no depleting agent. METHODOLOGY/PRINCIPAL FINDINGS: Diabetic C57BL/6 mice were transplanted with Balb/c pancreatic islets. Recipient mice transiently treated with anti-CD45RB mAb+rapamycin+IL-10 developed antigen-specific tolerance. During treatment, Foxp3(+)Treg cells were momentarily enriched in the blood, followed by accumulation in the graft and draining lymph node, whereas CD4(+)IL-10(+)IL-4(−) T (i.e., Tr1) cells localized in the spleen. In long-term tolerant mice, only CD4(+)IL-10(+)IL-4(−) T cells remained enriched in the spleen and IL-10 was key in the maintenance of tolerance. Alternatively, recipient mice were treated with two compounds routinely used in the clinic (namely, rapamycin and G-CSF); this drug combination promoted tolerance associated with CD4(+)IL-10(+)IL-4(−) T cells. CONCLUSIONS/SIGNIFICANCE: The anti-CD45RB mAb+rapamycin+IL-10 combined protocol promotes a state of tolerance that is IL-10 dependent. Moreover, the combination of rapamycin+G-CSF induces tolerance and such treatment could be readily translatable into the clinic.