Cargando…
Human Embryonic Stem Cells Express Elevated Levels of Multiple Pro-Apoptotic BCL-2 Family Members
Two of the greatest challenges in regenerative medicine today remain (1) the ability to culture human embryonic stem cells (hESCs) at a scale sufficient to satisfy clinical demand and (2) the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235131/ https://www.ncbi.nlm.nih.gov/pubmed/22174832 http://dx.doi.org/10.1371/journal.pone.0028530 |
Sumario: | Two of the greatest challenges in regenerative medicine today remain (1) the ability to culture human embryonic stem cells (hESCs) at a scale sufficient to satisfy clinical demand and (2) the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes. Understanding the pathways governing apoptosis in hESCs may provide a means to address these issues. Limiting apoptosis could aid scaling efforts, whereas triggering selective apoptosis in hESCs could eliminate unwanted teratoma-forming cells. We focus here on the BCL-2 family of proteins, which regulate mitochondrial-dependent apoptosis. We used quantitative PCR to compare the steady-state expression profile of all human BCL-2 family members in hESCs with that of human primary cells from various origins and two cancer lines. Our findings indicate that hESCs express elevated levels of the pro-apoptotic BH3-only BCL-2 family members NOXA, BIK, BIM, BMF and PUMA when compared with differentiated cells and cancer cells. However, compensatory expression of pro-survival BCL-2 family members in hESCs was not observed, suggesting a possible explanation for the elevated rates of apoptosis observed in proliferating hESC cultures, as well as a mechanism that could be exploited to limit hESC-derived neoplasms. |
---|