Cargando…
Decoding Sequence Learning from Single-Trial Intracranial EEG in Humans
We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level...
Autores principales: | De Lucia, Marzia, Constantinescu, Irina, Sterpenich, Virginie, Pourtois, Gilles, Seeck, Margitta, Schwartz, Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235148/ https://www.ncbi.nlm.nih.gov/pubmed/22174850 http://dx.doi.org/10.1371/journal.pone.0028630 |
Ejemplares similares
-
Implantation and reimplantation of intracranial EEG electrodes in patients considering epilepsy surgery
por: Eelbode, Céline, et al.
Publicado: (2023) -
Decoding intracranial EEG data with multiple kernel learning method
por: Schrouff, Jessica, et al.
Publicado: (2016) -
Decoding Intracranial EEG With Machine Learning: A Systematic Review
por: Mirchi, Nykan, et al.
Publicado: (2022) -
EEG biomarker candidates for the identification of epilepsy
por: Gallotto, Stefano, et al.
Publicado: (2022) -
Brain reactivity to emotion persists in NREM sleep and is associated with individual dream recall
por: Moyne, Maëva, et al.
Publicado: (2022)