Cargando…

Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform

We demonstrate the operation of a digital microfluidic lab-on-a-chip system utilizing Electro Wetting on Dielectrics (EWOD) as the actuation principle and a High Fundamental Frequency (HFF; 50 MHz) quartz crystal microbalance (QCM) resonator as a mass-sensitive sensor. In a first experiment we have...

Descripción completa

Detalles Bibliográficos
Autores principales: Lederer, Thomas, Stehrer, Brigitte P., Bauer, Siegfried, Jakoby, Bernhard, Hilber, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Sequoia 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235545/
https://www.ncbi.nlm.nih.gov/pubmed/22241942
http://dx.doi.org/10.1016/j.sna.2011.04.032
_version_ 1782218616986402816
author Lederer, Thomas
Stehrer, Brigitte P.
Bauer, Siegfried
Jakoby, Bernhard
Hilber, Wolfgang
author_facet Lederer, Thomas
Stehrer, Brigitte P.
Bauer, Siegfried
Jakoby, Bernhard
Hilber, Wolfgang
author_sort Lederer, Thomas
collection PubMed
description We demonstrate the operation of a digital microfluidic lab-on-a-chip system utilizing Electro Wetting on Dielectrics (EWOD) as the actuation principle and a High Fundamental Frequency (HFF; 50 MHz) quartz crystal microbalance (QCM) resonator as a mass-sensitive sensor. In a first experiment we have tested the reversible formation of a phosphor-lipid monolayer of phospholipid vesicles out of an aqueous buffer suspension onto a bio-functionalized integrated QCM sensor. A binding of bio-molecules results in an altered mass load of the resonant sensor and a shift of the resonance frequency can be measured. In the second part of the experiment, the formation of a protein multilayer composed of the biomolecule streptavidin and biotinylated immunoglobulin G was monitored. Additionally, the macroscopic contact angle was optically measured in order to verify the bio-specific binding and to test the implications onto the balance of the surface tensions. Using these sample applications, we were able to demonstrate and to verify the feasibility of integrating a mass-sensitive QCM sensor into a digital microfluidic chip.
format Online
Article
Text
id pubmed-3235545
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Elsevier Sequoia
record_format MEDLINE/PubMed
spelling pubmed-32355452012-01-10 Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform Lederer, Thomas Stehrer, Brigitte P. Bauer, Siegfried Jakoby, Bernhard Hilber, Wolfgang Sens Actuators A Phys Article We demonstrate the operation of a digital microfluidic lab-on-a-chip system utilizing Electro Wetting on Dielectrics (EWOD) as the actuation principle and a High Fundamental Frequency (HFF; 50 MHz) quartz crystal microbalance (QCM) resonator as a mass-sensitive sensor. In a first experiment we have tested the reversible formation of a phosphor-lipid monolayer of phospholipid vesicles out of an aqueous buffer suspension onto a bio-functionalized integrated QCM sensor. A binding of bio-molecules results in an altered mass load of the resonant sensor and a shift of the resonance frequency can be measured. In the second part of the experiment, the formation of a protein multilayer composed of the biomolecule streptavidin and biotinylated immunoglobulin G was monitored. Additionally, the macroscopic contact angle was optically measured in order to verify the bio-specific binding and to test the implications onto the balance of the surface tensions. Using these sample applications, we were able to demonstrate and to verify the feasibility of integrating a mass-sensitive QCM sensor into a digital microfluidic chip. Elsevier Sequoia 2011-12 /pmc/articles/PMC3235545/ /pubmed/22241942 http://dx.doi.org/10.1016/j.sna.2011.04.032 Text en © 2011 Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license
spellingShingle Article
Lederer, Thomas
Stehrer, Brigitte P.
Bauer, Siegfried
Jakoby, Bernhard
Hilber, Wolfgang
Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
title Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
title_full Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
title_fullStr Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
title_full_unstemmed Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
title_short Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
title_sort utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235545/
https://www.ncbi.nlm.nih.gov/pubmed/22241942
http://dx.doi.org/10.1016/j.sna.2011.04.032
work_keys_str_mv AT ledererthomas utilizingahighfundamentalfrequencyquartzcrystalresonatorasabiosensorinadigitalmicrofluidicplatform
AT stehrerbrigittep utilizingahighfundamentalfrequencyquartzcrystalresonatorasabiosensorinadigitalmicrofluidicplatform
AT bauersiegfried utilizingahighfundamentalfrequencyquartzcrystalresonatorasabiosensorinadigitalmicrofluidicplatform
AT jakobybernhard utilizingahighfundamentalfrequencyquartzcrystalresonatorasabiosensorinadigitalmicrofluidicplatform
AT hilberwolfgang utilizingahighfundamentalfrequencyquartzcrystalresonatorasabiosensorinadigitalmicrofluidicplatform