Cargando…
Assessment of Peripheral Airway Function following Chronic Allergen Challenge in a Sheep Model of Asthma
BACKGROUND: There is increasing evidence that the small airways contribute significantly to the pathophysiology of asthma. However, due to the difficulty in accessing distal lung regions in clinical settings, functional changes in the peripheral airways are often overlooked in studies of asthmatic p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236205/ https://www.ncbi.nlm.nih.gov/pubmed/22174883 http://dx.doi.org/10.1371/journal.pone.0028740 |
Sumario: | BACKGROUND: There is increasing evidence that the small airways contribute significantly to the pathophysiology of asthma. However, due to the difficulty in accessing distal lung regions in clinical settings, functional changes in the peripheral airways are often overlooked in studies of asthmatic patients. The aim of the current study was to characterize progressive changes in small airway function in sheep repeatedly challenged with house dust mite (HDM) allergen. METHODOLOGY/PRINCIPAL FINDINGS: Four spatially separate lung segments were utilized for HDM challenges. The right apical, right medial, right caudal and left caudal lung segments received 0, 8, 16 and 24 weekly challenges with HDM respectively. A wedged-bronchoscope technique was used to assess changes in peripheral resistance (R(p)) at rest, and in response to specific and non-specific stimuli throughout the trial. Allergen induced inflammatory cell infiltration into bronchoalveolar lavage and increases in R(p) in response to HDM and methacholine were localized to treated lung segments, with no changes observed in adjacent lung segments. The acute response to HDM was variable between sheep, and was significantly correlated to airway responsiveness to methacholine (r(s) = 0.095, P<0.01). There was no correlation between resting R(p) and the number of weeks of HDM exposure. Nor was there a correlation between the magnitude of early-phase airway response and the number of HDM-challenges. CONCLUSIONS: Our findings indicate that airway responses to allergic and non-allergic stimuli are localized to specific treated areas of the lung. Furthermore, while there was a decline in peripheral airway function with HDM exposure, this decrease was not correlated with the length of allergen challenge. |
---|