Cargando…
Predicting gene ontology from a global meta-analysis of 1-color microarray experiments
ABSTRACT: BACKGROUND: Global meta-analysis (GMA) of microarray data to identify genes with highly similar co-expression profiles is emerging as an accurate method to predict gene function and phenotype, even in the absence of published data on the gene(s) being analyzed. With a third of human genes...
Autores principales: | Dozmorov, Mikhail G, Giles, Cory B, Wren, Jonathan D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236836/ https://www.ncbi.nlm.nih.gov/pubmed/22166114 http://dx.doi.org/10.1186/1471-2105-12-S10-S14 |
Ejemplares similares
-
High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses
por: Dozmorov, Mikhail G, et al.
Publicado: (2011) -
mirCoX: a database of miRNA-mRNA expression correlations derived from RNA-seq meta-analysis
por: Giles, Cory B, et al.
Publicado: (2013) -
Systematic classification of non-coding RNAs by epigenomic similarity
por: Dozmorov, Mikhail G, et al.
Publicado: (2013) -
Large-scale directional relationship extraction and resolution
por: Giles, Cory B, et al.
Publicado: (2008) -
Improving sensitivity of linear regression-based cell type-specific differential expression deconvolution with per-gene vs. global significance threshold
por: Glass, Edmund R., et al.
Publicado: (2016)