Cargando…
Essential Factors for Incompatible DNA End Joining at Chromosomal DNA Double Strand Breaks In Vivo
Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double strand break (DSBs) with incompatible DNA ends, which are often generated by ionizing irradiation. In vitro reconstitution studies have indicated that NHEJ of incompatible DNA ends requires not only the core steps of s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237495/ https://www.ncbi.nlm.nih.gov/pubmed/22194904 http://dx.doi.org/10.1371/journal.pone.0028756 |
Sumario: | Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double strand break (DSBs) with incompatible DNA ends, which are often generated by ionizing irradiation. In vitro reconstitution studies have indicated that NHEJ of incompatible DNA ends requires not only the core steps of synapsis and ligation, employing KU80/DNA-PKcs and LIG4, but also additional DNA end processing steps, such as DNA end resection by Artemis and gap-filling by POLλ and POLμ. It seems that DNA end processing steps are important for joining of incompatible DNA ends rather than compatible ends. Despite the fact that DNA end processing is important for incompatible DNA end joining in vitro, the role of DNA processing in NHEJ of incompatible DSBs in vivo has not yet been demonstrated. Here we investigated the in vivo roles of proteins implicated in each step of NHEJ using an assay in which NHEJ of incompatible DNA ends on chromosomal DNA can be assessed in living human cells. siRNA- or inhibitor-mediated impairment of factors in each NHEJ step resulted in a reduction in joining efficiency. Strikingly, stronger effects were observed when DNA end resection and ligation protein functions were impaired. Disruption of synapsis by KU80 and DNA-PKcs impairment, or the disruption of gap filling by POLλ and POLμ depletion, resulted in higher levels of microhomology-mediated joining. The present study indicates that DNA end resection and ligation factors are critical for the efficient joining of incompatible ends in vivo, further emphasizing the importance of synapsis and gap-filling factors in preventing illegitimate joining. |
---|