Cargando…

Measuring Dissociation Rate Constants of Protein Complexes through Subunit Exchange: Experimental Design and Theoretical Modeling

Protein complexes are dynamic macromolecules that constantly dissociate into, and simultaneously are assembled from, free subunits. Dissociation rate constants, k(off), provide structural and functional information on protein complexes. However, because all existing methods for measuring k(off) requ...

Descripción completa

Detalles Bibliográficos
Autor principal: Pan, Chongle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237551/
https://www.ncbi.nlm.nih.gov/pubmed/22194924
http://dx.doi.org/10.1371/journal.pone.0028827
Descripción
Sumario:Protein complexes are dynamic macromolecules that constantly dissociate into, and simultaneously are assembled from, free subunits. Dissociation rate constants, k(off), provide structural and functional information on protein complexes. However, because all existing methods for measuring k(off) require high-quality purification and specific modifications of protein complexes, dissociation kinetics has only been studied for a small set of model complexes. Here, we propose a new method, called Metabolically-labeled Affinity-tagged Subunit Exchange (MASE), to measure k(off) using metabolic stable isotope labeling, affinity purification and mass spectrometry. MASE is based on a subunit exchange process between an unlabeled affinity-tagged variant and a metabolically-labeled untagged variant of a complex. The subunit exchange process was modeled theoretically for a heterodimeric complex. The results showed that k(off) determines, and hence can be estimated from, the observed rate of subunit exchange. This study provided the theoretical foundation for future experiments that can validate and apply the MASE method.