Cargando…
Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4
BACKGROUND: Activation of amoeboid microglial cells (AMC) and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present stu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239293/ https://www.ncbi.nlm.nih.gov/pubmed/22053919 http://dx.doi.org/10.1186/1471-2202-12-111 |
_version_ | 1782219161252921344 |
---|---|
author | Li, Fan Wang, Lei Li, Ji-Wei Gong, Min He, Liang Feng, Rui Dai, Zhen Li, Shu-Qing |
author_facet | Li, Fan Wang, Lei Li, Ji-Wei Gong, Min He, Liang Feng, Rui Dai, Zhen Li, Shu-Qing |
author_sort | Li, Fan |
collection | PubMed |
description | BACKGROUND: Activation of amoeboid microglial cells (AMC) and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia. RESULTS: We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC) and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7) but the immunofluorescence in AMC was progressively diminished with advancing age (P14). It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-α protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% vs hypoxic group) and TNF-α expression (40% vs hypoxic group). However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid) tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression. CONCLUSIONS: It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-α expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate suggesting that P2X4 mediates ATP induced AMC activation and its production of proinflammatory cytokines. |
format | Online Article Text |
id | pubmed-3239293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32392932011-12-16 Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 Li, Fan Wang, Lei Li, Ji-Wei Gong, Min He, Liang Feng, Rui Dai, Zhen Li, Shu-Qing BMC Neurosci Research Article BACKGROUND: Activation of amoeboid microglial cells (AMC) and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia. RESULTS: We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC) and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7) but the immunofluorescence in AMC was progressively diminished with advancing age (P14). It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-α protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% vs hypoxic group) and TNF-α expression (40% vs hypoxic group). However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid) tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression. CONCLUSIONS: It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-α expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate suggesting that P2X4 mediates ATP induced AMC activation and its production of proinflammatory cytokines. BioMed Central 2011-11-04 /pmc/articles/PMC3239293/ /pubmed/22053919 http://dx.doi.org/10.1186/1471-2202-12-111 Text en Copyright ©2011 Li et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Fan Wang, Lei Li, Ji-Wei Gong, Min He, Liang Feng, Rui Dai, Zhen Li, Shu-Qing Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 |
title | Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 |
title_full | Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 |
title_fullStr | Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 |
title_full_unstemmed | Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 |
title_short | Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4 |
title_sort | hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by atp receptor p2x4 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239293/ https://www.ncbi.nlm.nih.gov/pubmed/22053919 http://dx.doi.org/10.1186/1471-2202-12-111 |
work_keys_str_mv | AT lifan hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT wanglei hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT lijiwei hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT gongmin hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT heliang hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT fengrui hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT daizhen hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 AT lishuqing hypoxiainducedamoeboidmicroglialcellactivationinpostnatalratbrainismediatedbyatpreceptorp2x4 |