Cargando…

Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism

INTRODUCTION: Tumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy...

Descripción completa

Detalles Bibliográficos
Autores principales: Allen, Kyle D, Shamji, Mohammed F, Mata, Brian A, Gabr, Mostafa A, Sinclair, S Michael, Schmitt, Daniel O, Richardson, William J, Setton, Lori A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239380/
https://www.ncbi.nlm.nih.gov/pubmed/21871102
http://dx.doi.org/10.1186/ar3451
_version_ 1782219180176572416
author Allen, Kyle D
Shamji, Mohammed F
Mata, Brian A
Gabr, Mostafa A
Sinclair, S Michael
Schmitt, Daniel O
Richardson, William J
Setton, Lori A
author_facet Allen, Kyle D
Shamji, Mohammed F
Mata, Brian A
Gabr, Mostafa A
Sinclair, S Michael
Schmitt, Daniel O
Richardson, William J
Setton, Lori A
author_sort Allen, Kyle D
collection PubMed
description INTRODUCTION: Tumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception. METHODS: Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6. RESULTS: High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1). CONCLUSIONS: Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model.
format Online
Article
Text
id pubmed-3239380
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32393802011-12-16 Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism Allen, Kyle D Shamji, Mohammed F Mata, Brian A Gabr, Mostafa A Sinclair, S Michael Schmitt, Daniel O Richardson, William J Setton, Lori A Arthritis Res Ther Research Article INTRODUCTION: Tumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception. METHODS: Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6. RESULTS: High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1). CONCLUSIONS: Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model. BioMed Central 2011 2011-08-26 /pmc/articles/PMC3239380/ /pubmed/21871102 http://dx.doi.org/10.1186/ar3451 Text en Copyright ©2011 Allen et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Allen, Kyle D
Shamji, Mohammed F
Mata, Brian A
Gabr, Mostafa A
Sinclair, S Michael
Schmitt, Daniel O
Richardson, William J
Setton, Lori A
Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
title Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
title_full Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
title_fullStr Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
title_full_unstemmed Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
title_short Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
title_sort kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239380/
https://www.ncbi.nlm.nih.gov/pubmed/21871102
http://dx.doi.org/10.1186/ar3451
work_keys_str_mv AT allenkyled kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT shamjimohammedf kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT matabriana kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT gabrmostafaa kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT sinclairsmichael kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT schmittdanielo kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT richardsonwilliamj kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism
AT settonloria kinematicanddynamicgaitcompensationsinaratmodeloflumbarradiculopathyandtheeffectsoftumornecrosisfactoralphaantagonism