Cargando…

BRCA1 tumor suppression occurs via heterochromatin mediated silencing

Mutations in tumor suppressor BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of BRCA1 in mice results in transcriptional derepression of the tandemly repeated satellite DNA. BRCA1 deficiency is accompanied by reduction of condensed DNA regions in the genome and loss of ubiquityla...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Quan, Pao, Gerald M., Huynh, Alexis M., Suh, Hoonkyo, Tonnu, Nina, Nederlof, Petra, Gage, Fred H., Verma, Inder M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240576/
https://www.ncbi.nlm.nih.gov/pubmed/21901007
http://dx.doi.org/10.1038/nature10371
Descripción
Sumario:Mutations in tumor suppressor BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of BRCA1 in mice results in transcriptional derepression of the tandemly repeated satellite DNA. BRCA1 deficiency is accompanied by reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions in vivo and ubiquitylates H2A in vitro. Ectopic expression of an H2A fused to ubiquitin reverses the effects of BRCA1 loss, suggesting that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA derepression was also observed mouse and human BRCA1 deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumor suppressor functions.