Cargando…
Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operati...
Autores principales: | Pecevski, Dejan, Buesing, Lars, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240581/ https://www.ncbi.nlm.nih.gov/pubmed/22219717 http://dx.doi.org/10.1371/journal.pcbi.1002294 |
Ejemplares similares
-
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
por: Pecevski, Dejan, et al.
Publicado: (2016) -
Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
por: Buesing, Lars, et al.
Publicado: (2011) -
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons
por: Probst, Dimitri, et al.
Publicado: (2015) -
A Learning Theory for Reward-Modulated Spike-Timing-Dependent
Plasticity with Application to Biofeedback
por: Legenstein, Robert, et al.
Publicado: (2008) -
Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment
por: Legenstein, Robert, et al.
Publicado: (2014)