Cargando…

Structural Analysis of the UBA Domain of X-linked Inhibitor of Apoptosis Protein Reveals Different Surfaces for Ubiquitin-Binding and Self-Association

BACKGROUND: Inhibitor of apoptosis proteins (IAPs) belong to a pivotal antiapoptotic protein family that plays a crucial role in tumorigenesis, cancer progression, chemoresistance and poor patient-survival. X-linked inhibitor of apoptosis protein (XIAP) is a prominent member of IAPs attracting inten...

Descripción completa

Detalles Bibliográficos
Autores principales: Tse, Man Kit, Hui, Sin Kam, Yang, Yinhua, Yin, Si-Tao, Hu, Hong-Yu, Zou, Bing, Wong, Benjamin Chun Yu, Sze, Kong Hung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240630/
https://www.ncbi.nlm.nih.gov/pubmed/22194841
http://dx.doi.org/10.1371/journal.pone.0028511
Descripción
Sumario:BACKGROUND: Inhibitor of apoptosis proteins (IAPs) belong to a pivotal antiapoptotic protein family that plays a crucial role in tumorigenesis, cancer progression, chemoresistance and poor patient-survival. X-linked inhibitor of apoptosis protein (XIAP) is a prominent member of IAPs attracting intense research because it has been demonstrated to be a physiological inhibitor of caspases and apoptosis. Recently, an evolutionarily conserved ubiquitin-associated (UBA) domain was identified in XIAP and a number of RING domain-bearing IAPs. This has placed the IAPs in the group of ubiquitin binding proteins. Here, we explore the three-dimensional structure of the XIAP UBA domain (XIAP-UBA) and how it interacts with mono-ubiquitin and diubiquitin conjugates. PRINCIPAL FINDINGS: The solution structure of the XIAP-UBA domain was determined by NMR spectroscopy. XIAP-UBA adopts a typical UBA domain fold of three tightly packed α-helices but with an additional N-terminal 3(10) helix. The XIAP-UBA binds mono-ubiquitin as well as Lys48-linked and linear-linked diubiquitins at low-micromolar affinities. NMR analysis of the XIAP-UBA–ubiquitin interaction reveals that it involves the classical hydrophobic patches surrounding Ile44 of ubiquitin and the conserved MGF/LV motif surfaces on XIAP-UBA. Furthermore, dimerization of XIAP-UBA was observed. Mapping of the self-association surface of XIAP-UBA reveals that the dimerization interface is formed by residues in the N-terminal 3(10) helix, helix α1 and helix α2, separate from the ubiquitin-binding surface. CONCLUSION: Our results provide the first structural information of XIAP-UBA and map its interaction with mono-ubiquitin, Lys48-linked and linear-linked diubiquitins. The notion that XIAP-UBA uses different surfaces for ubiquitin-binding and self-association provides a plausible model to explain the reported selectivity of XIAP in binding polyubiquitin chains with different linkages.