Cargando…
Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis
Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ(70)-like transcription factors have evolved in order to respond to this changing environment. Recent...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240639/ https://www.ncbi.nlm.nih.gov/pubmed/22194974 http://dx.doi.org/10.1371/journal.pone.0029002 |
_version_ | 1782219460344545280 |
---|---|
author | Huis in 't Veld, Robert Antonius Gerhardus Willemsen, Antonius Marcellinus van Kampen, Antonius Hubertus Cornelis Bradley, Edward John Baas, Frank Pannekoek, Yvonne van der Ende, Arie |
author_facet | Huis in 't Veld, Robert Antonius Gerhardus Willemsen, Antonius Marcellinus van Kampen, Antonius Hubertus Cornelis Bradley, Edward John Baas, Frank Pannekoek, Yvonne van der Ende, Arie |
author_sort | Huis in 't Veld, Robert Antonius Gerhardus |
collection | PubMed |
description | Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ(70)-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σ(E) regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σ(E) regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σ(E) is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σ(E) operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σ(E) dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides. |
format | Online Article Text |
id | pubmed-3240639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32406392011-12-22 Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis Huis in 't Veld, Robert Antonius Gerhardus Willemsen, Antonius Marcellinus van Kampen, Antonius Hubertus Cornelis Bradley, Edward John Baas, Frank Pannekoek, Yvonne van der Ende, Arie PLoS One Research Article Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ(70)-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σ(E) regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σ(E) regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σ(E) is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σ(E) operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σ(E) dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides. Public Library of Science 2011-12-15 /pmc/articles/PMC3240639/ /pubmed/22194974 http://dx.doi.org/10.1371/journal.pone.0029002 Text en Huis in 't Veld et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Huis in 't Veld, Robert Antonius Gerhardus Willemsen, Antonius Marcellinus van Kampen, Antonius Hubertus Cornelis Bradley, Edward John Baas, Frank Pannekoek, Yvonne van der Ende, Arie Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis |
title | Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis
|
title_full | Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis
|
title_fullStr | Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis
|
title_full_unstemmed | Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis
|
title_short | Deep Sequencing Whole Transcriptome Exploration of the σ(E) Regulon in Neisseria meningitidis
|
title_sort | deep sequencing whole transcriptome exploration of the σ(e) regulon in neisseria meningitidis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240639/ https://www.ncbi.nlm.nih.gov/pubmed/22194974 http://dx.doi.org/10.1371/journal.pone.0029002 |
work_keys_str_mv | AT huisintveldrobertantoniusgerhardus deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis AT willemsenantoniusmarcellinus deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis AT vankampenantoniushubertuscornelis deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis AT bradleyedwardjohn deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis AT baasfrank deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis AT pannekoekyvonne deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis AT vanderendearie deepsequencingwholetranscriptomeexplorationofthesereguloninneisseriameningitidis |