Cargando…
DNA recognition and transcriptional regulation by the WhiA sporulation factor
Sporulation in the filamentous bacteria Streptomyces coelicolor is a tightly regulated process involving aerial hyphae growth, chromosome segregation, septation and spore maturation. Genetic studies have identified numerous genes that regulate sporulation, including WhiA and the sigma factor WhiG. W...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240954/ https://www.ncbi.nlm.nih.gov/pubmed/22355671 http://dx.doi.org/10.1038/srep00156 |
Sumario: | Sporulation in the filamentous bacteria Streptomyces coelicolor is a tightly regulated process involving aerial hyphae growth, chromosome segregation, septation and spore maturation. Genetic studies have identified numerous genes that regulate sporulation, including WhiA and the sigma factor WhiG. WhiA, which has been postulated to be a transcriptional regulator, contains two regions typically associated with DNA binding: an N-terminal domain similar to LAGLIDADG homing endonucleases, and a C-terminal helix-turn-helix domain. We characterized several in vitro activities displayed by WhiA. It binds at least two sporulation-specific promoters: its own and that of parABp(2). DNA binding is primarily driven by its HTH domain, but requires full-length protein for maximum affinity. WhiA transcription is stimulated by WhiG, while the WhiA protein binds directly to WhiG (leading to inhibition of WhiG-dependent transcription). These separate activities, which resemble a possible feedback loop, may help coordinate the closely timed cessation of aerial growth and subsequent spore formation. |
---|