Cargando…
hiPathDB: a human-integrated pathway database with facile visualization
One of the biggest challenges in the study of biological regulatory networks is the systematic organization and integration of complex interactions taking place within various biological pathways. Currently, the information of the biological pathways is dispersed in multiple databases in various for...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245021/ https://www.ncbi.nlm.nih.gov/pubmed/22123737 http://dx.doi.org/10.1093/nar/gkr1127 |
_version_ | 1782219781917638656 |
---|---|
author | Yu, Namhee Seo, Jihae Rho, Kyoohyoung Jang, Yeongjun Park, Jinah Kim, Wan Kyu Lee, Sanghyuk |
author_facet | Yu, Namhee Seo, Jihae Rho, Kyoohyoung Jang, Yeongjun Park, Jinah Kim, Wan Kyu Lee, Sanghyuk |
author_sort | Yu, Namhee |
collection | PubMed |
description | One of the biggest challenges in the study of biological regulatory networks is the systematic organization and integration of complex interactions taking place within various biological pathways. Currently, the information of the biological pathways is dispersed in multiple databases in various formats. hiPathDB is an integrated pathway database that combines the curated human pathway data of NCI-Nature PID, Reactome, BioCarta and KEGG. In total, it includes 1661 pathways consisting of 8976 distinct physical entities. hiPathDB provides two different types of integration. The pathway-level integration, conceptually a simple collection of individual pathways, was achieved by devising an elaborate model that takes distinct features of four databases into account and subsequently reformatting all pathways in accordance with our model. The entity-level integration creates a single unified pathway that encompasses all pathways by merging common components. Even though the detailed molecular-level information such as complex formation or post-translational modifications tends to be lost, such integration makes it possible to investigate signaling network over the entire pathways and allows identification of pathway cross-talks. Another strong merit of hiPathDB is the built-in pathway visualization module that supports explorative studies of complex networks in an interactive fashion. The layout algorithm is optimized for virtually automatic visualization of the pathways. hiPathDB is available at http://hiPathDB.kobic.re.kr. |
format | Online Article Text |
id | pubmed-3245021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-32450212012-01-10 hiPathDB: a human-integrated pathway database with facile visualization Yu, Namhee Seo, Jihae Rho, Kyoohyoung Jang, Yeongjun Park, Jinah Kim, Wan Kyu Lee, Sanghyuk Nucleic Acids Res Articles One of the biggest challenges in the study of biological regulatory networks is the systematic organization and integration of complex interactions taking place within various biological pathways. Currently, the information of the biological pathways is dispersed in multiple databases in various formats. hiPathDB is an integrated pathway database that combines the curated human pathway data of NCI-Nature PID, Reactome, BioCarta and KEGG. In total, it includes 1661 pathways consisting of 8976 distinct physical entities. hiPathDB provides two different types of integration. The pathway-level integration, conceptually a simple collection of individual pathways, was achieved by devising an elaborate model that takes distinct features of four databases into account and subsequently reformatting all pathways in accordance with our model. The entity-level integration creates a single unified pathway that encompasses all pathways by merging common components. Even though the detailed molecular-level information such as complex formation or post-translational modifications tends to be lost, such integration makes it possible to investigate signaling network over the entire pathways and allows identification of pathway cross-talks. Another strong merit of hiPathDB is the built-in pathway visualization module that supports explorative studies of complex networks in an interactive fashion. The layout algorithm is optimized for virtually automatic visualization of the pathways. hiPathDB is available at http://hiPathDB.kobic.re.kr. Oxford University Press 2012-01 2011-11-28 /pmc/articles/PMC3245021/ /pubmed/22123737 http://dx.doi.org/10.1093/nar/gkr1127 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Yu, Namhee Seo, Jihae Rho, Kyoohyoung Jang, Yeongjun Park, Jinah Kim, Wan Kyu Lee, Sanghyuk hiPathDB: a human-integrated pathway database with facile visualization |
title | hiPathDB: a human-integrated pathway database with facile visualization |
title_full | hiPathDB: a human-integrated pathway database with facile visualization |
title_fullStr | hiPathDB: a human-integrated pathway database with facile visualization |
title_full_unstemmed | hiPathDB: a human-integrated pathway database with facile visualization |
title_short | hiPathDB: a human-integrated pathway database with facile visualization |
title_sort | hipathdb: a human-integrated pathway database with facile visualization |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245021/ https://www.ncbi.nlm.nih.gov/pubmed/22123737 http://dx.doi.org/10.1093/nar/gkr1127 |
work_keys_str_mv | AT yunamhee hipathdbahumanintegratedpathwaydatabasewithfacilevisualization AT seojihae hipathdbahumanintegratedpathwaydatabasewithfacilevisualization AT rhokyoohyoung hipathdbahumanintegratedpathwaydatabasewithfacilevisualization AT jangyeongjun hipathdbahumanintegratedpathwaydatabasewithfacilevisualization AT parkjinah hipathdbahumanintegratedpathwaydatabasewithfacilevisualization AT kimwankyu hipathdbahumanintegratedpathwaydatabasewithfacilevisualization AT leesanghyuk hipathdbahumanintegratedpathwaydatabasewithfacilevisualization |