Cargando…
A comprehensive manually curated protein–protein interaction database for the Death Domain superfamily
The Death Domain (DD) superfamily, which is one of the largest classes of protein interaction modules, plays a pivotal role in apoptosis, inflammation, necrosis and immune cell signaling pathways. Because aberrant or inappropriate DD superfamily-mediated signaling events are associated with various...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245059/ https://www.ncbi.nlm.nih.gov/pubmed/22135292 http://dx.doi.org/10.1093/nar/gkr1149 |
Sumario: | The Death Domain (DD) superfamily, which is one of the largest classes of protein interaction modules, plays a pivotal role in apoptosis, inflammation, necrosis and immune cell signaling pathways. Because aberrant or inappropriate DD superfamily-mediated signaling events are associated with various human diseases, such as cancers, neurodegenerative diseases and immunological disorders, the studies in these fields are of great biological and clinical importance. To facilitate the understanding of the molecular mechanisms by which the DD superfamily is associated with biological and disease processes, we have developed the DD database (http://www.deathdomain.org), a manually curated database that aims to offer comprehensive information on protein–protein interactions (PPIs) of the DD superfamily. The DD database was created by manually curating 295 peer-reviewed studies that were published in the literature; the current version documents 175 PPI pairs among the 99 DD superfamily proteins. The DD database provides a detailed summary of the DD superfamily proteins and their PPI data. Users can find in-depth information that is specified in the literature on relevant analytical methods, experimental resources and domain structures. Our database provides a definitive and valuable tool that assists researchers in understanding the signaling network that is mediated by the DD superfamily. |
---|