Cargando…

AH-DB: collecting protein structure pairs before and after binding

This work presents the Apo–Holo DataBase (AH-DB, http://ahdb.ee.ncku.edu.tw/ and http://ahdb.csbb.ntu.edu.tw/), which provides corresponding pairs of protein structures before and after binding. Conformational transitions are commonly observed in various protein interactions that are involved in imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Darby Tien-Hao, Yao, Tsung-Ju, Fan, Chen-Yu, Chiang, Chih-Yun, Bai, Yi-Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245139/
https://www.ncbi.nlm.nih.gov/pubmed/22084200
http://dx.doi.org/10.1093/nar/gkr940
Descripción
Sumario:This work presents the Apo–Holo DataBase (AH-DB, http://ahdb.ee.ncku.edu.tw/ and http://ahdb.csbb.ntu.edu.tw/), which provides corresponding pairs of protein structures before and after binding. Conformational transitions are commonly observed in various protein interactions that are involved in important biological functions. For example, copper–zinc superoxide dismutase (SOD1), which destroys free superoxide radicals in the body, undergoes a large conformational transition from an ‘open’ state (apo structure) to a ‘closed’ state (holo structure). Many studies have utilized collections of apo–holo structure pairs to investigate the conformational transitions and critical residues. However, the collection process is usually complicated, varies from study to study and produces a small-scale data set. AH-DB is designed to provide an easy and unified way to prepare such data, which is generated by identifying/mapping molecules in different Protein Data Bank (PDB) entries. Conformational transitions are identified based on a refined alignment scheme to overcome the challenge that many structures in the PDB database are only protein fragments and not complete proteins. There are 746 314 apo–holo pairs in AH-DB, which is about 30 times those in the second largest collection of similar data. AH-DB provides sophisticated interfaces for searching apo–holo structure pairs and exploring conformational transitions from apo structures to the corresponding holo structures.