Cargando…
Lack of sufficiently strong informative features limits the potential of gene expression analysis as predictive tool for many clinical classification problems
BACKGROUND: Our goal was to examine how various aspects of a gene signature influence the success of developing multi-gene prediction models. We inserted gene signatures into three real data sets by altering the expression level of existing probe sets. We varied the number of probe sets perturbed (s...
Autores principales: | Hess, Kenneth R, Wei, Caimiao, Qi, Yuan, Iwamoto, Takayuki, Symmans, W Fraser, Pusztai, Lajos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245512/ https://www.ncbi.nlm.nih.gov/pubmed/22132775 http://dx.doi.org/10.1186/1471-2105-12-463 |
Ejemplares similares
-
Predicting prognosis of breast cancer with gene signatures: are we lost in a sea of data?
por: Iwamoto, Takayuki, et al.
Publicado: (2010) -
Reproducibility of Variant Calls in Replicate Next Generation Sequencing Experiments
por: Qi, Yuan, et al.
Publicado: (2015) -
The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data
por: Wang, Jing, et al.
Publicado: (2009) -
Maximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile
por: Zhao, Chen, et al.
Publicado: (2011) -
Bone metastasis-related signaling pathways in breast cancers stratified by estrogen receptor status
por: Hayashi, Naoki, et al.
Publicado: (2017)