Cargando…

Bayesian inference of ancient human demography from individual genome sequences

Besides their value for biomedicine, individual genome sequences are a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters from sequences for six individuals from diverse human populations. We use a Bayesian, coalescent-based approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Gronau, Ilan, Hubisz, Melissa J., Gulko, Brad, Danko, Charles G., Siepel, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245873/
https://www.ncbi.nlm.nih.gov/pubmed/21926973
http://dx.doi.org/10.1038/ng.937
Descripción
Sumario:Besides their value for biomedicine, individual genome sequences are a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters from sequences for six individuals from diverse human populations. We use a Bayesian, coalescent-based approach to extract information about ancestral population sizes, divergence times, and migration rates from inferred genealogies at many neutrally evolving loci from across the genome. We introduce new methods for accommodating gene flow between populations and integrating over possible phasings of diploid genotypes. We also describe a custom pipeline for genotype inference to mitigate biases from heterogeneous sequencing technologies and coverage levels. Our analysis indicates that the San of Southern Africa diverged from other human populations 108–157 thousand years ago (kya), that Eurasians diverged from an ancestral African population 38–64 kya, and that the effective population size of the ancestors of all modern humans was ~9,000.