Cargando…
Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures
The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show tha...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246609/ http://dx.doi.org/10.1007/s11671-007-9098-9 |
_version_ | 1782219968514883584 |
---|---|
author | Li, Shu-Shen Xia, Jian-Bai |
author_facet | Li, Shu-Shen Xia, Jian-Bai |
author_sort | Li, Shu-Shen |
collection | PubMed |
description | The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures’ center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices. |
format | Online Article Text |
id | pubmed-3246609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-32466092011-12-28 Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures Li, Shu-Shen Xia, Jian-Bai Nanoscale Res Lett Nano Express The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures’ center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices. Springer 2007-10-09 /pmc/articles/PMC3246609/ http://dx.doi.org/10.1007/s11671-007-9098-9 Text en Copyright ©2007 to the authors |
spellingShingle | Nano Express Li, Shu-Shen Xia, Jian-Bai Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures |
title | Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures |
title_full | Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures |
title_fullStr | Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures |
title_full_unstemmed | Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures |
title_short | Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures |
title_sort | electronic structure of a hydrogenic acceptor impurity in semiconductor nano-structures |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246609/ http://dx.doi.org/10.1007/s11671-007-9098-9 |
work_keys_str_mv | AT lishushen electronicstructureofahydrogenicacceptorimpurityinsemiconductornanostructures AT xiajianbai electronicstructureofahydrogenicacceptorimpurityinsemiconductornanostructures |