Cargando…
Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement
On the basis of our findings reporting that cell adhesion induces the generation of reactive oxygen species (ROS) after integrin engagement, we were interested in identifying redox-regulated proteins during this process. Mass spectrometry analysis led us to identify nonmuscle myosin heavy chain (nmM...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246775/ https://www.ncbi.nlm.nih.gov/pubmed/22220276 http://dx.doi.org/10.1155/2012/754964 |
_version_ | 1782219988508082176 |
---|---|
author | Fiaschi, Tania Cozzi, Giacomo Chiarugi, Paola |
author_facet | Fiaschi, Tania Cozzi, Giacomo Chiarugi, Paola |
author_sort | Fiaschi, Tania |
collection | PubMed |
description | On the basis of our findings reporting that cell adhesion induces the generation of reactive oxygen species (ROS) after integrin engagement, we were interested in identifying redox-regulated proteins during this process. Mass spectrometry analysis led us to identify nonmuscle myosin heavy chain (nmMHC) as a target of ROS. Our results show that, while nmMHC is reduced in detached/rounded cells, it turns towards an oxidized state in adherent/spread cells due to the integrin-engaged ROS machinery. The functional role of nmMHC redox regulation is suggested by the redox sensitivity of its association with actin, suggesting a role of nmMHC oxidation in cytoskeleton movement. Analysis of muscle MHC (mMHC) redox state during muscle differentiation, a process linked to a great and stable decrease of ROS content, shows that the protein does not undergo a redox control. Hence, we propose that the redox regulation of MHC in nonprofessional muscle cells is mandatory for actin binding during dynamic cytoskeleton rearrangement, but it is dispensable for static and highly organized cytoskeletal contractile architecture in differentiating myotubes. |
format | Online Article Text |
id | pubmed-3246775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-32467752012-01-04 Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement Fiaschi, Tania Cozzi, Giacomo Chiarugi, Paola J Signal Transduct Research Article On the basis of our findings reporting that cell adhesion induces the generation of reactive oxygen species (ROS) after integrin engagement, we were interested in identifying redox-regulated proteins during this process. Mass spectrometry analysis led us to identify nonmuscle myosin heavy chain (nmMHC) as a target of ROS. Our results show that, while nmMHC is reduced in detached/rounded cells, it turns towards an oxidized state in adherent/spread cells due to the integrin-engaged ROS machinery. The functional role of nmMHC redox regulation is suggested by the redox sensitivity of its association with actin, suggesting a role of nmMHC oxidation in cytoskeleton movement. Analysis of muscle MHC (mMHC) redox state during muscle differentiation, a process linked to a great and stable decrease of ROS content, shows that the protein does not undergo a redox control. Hence, we propose that the redox regulation of MHC in nonprofessional muscle cells is mandatory for actin binding during dynamic cytoskeleton rearrangement, but it is dispensable for static and highly organized cytoskeletal contractile architecture in differentiating myotubes. Hindawi Publishing Corporation 2012 2011-12-19 /pmc/articles/PMC3246775/ /pubmed/22220276 http://dx.doi.org/10.1155/2012/754964 Text en Copyright © 2012 Tania Fiaschi et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fiaschi, Tania Cozzi, Giacomo Chiarugi, Paola Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement |
title | Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement |
title_full | Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement |
title_fullStr | Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement |
title_full_unstemmed | Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement |
title_short | Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement |
title_sort | redox regulation of nonmuscle myosin heavy chain during integrin engagement |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246775/ https://www.ncbi.nlm.nih.gov/pubmed/22220276 http://dx.doi.org/10.1155/2012/754964 |
work_keys_str_mv | AT fiaschitania redoxregulationofnonmusclemyosinheavychainduringintegrinengagement AT cozzigiacomo redoxregulationofnonmusclemyosinheavychainduringintegrinengagement AT chiarugipaola redoxregulationofnonmusclemyosinheavychainduringintegrinengagement |