Cargando…
Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study
BACKGROUND: Chrysanthemic acid (CHA) is a major product from the photodecomposition of pyrethrin which is an important class of pesticide compounds. In the following paper, Hybrid density functional theory (DFT) calculations of the potential energy surface (PES) for three possible channels decomposi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247183/ https://www.ncbi.nlm.nih.gov/pubmed/22035035 http://dx.doi.org/10.1186/1752-153X-5-66 |
_version_ | 1782220051061932032 |
---|---|
author | Elroby, Shabaan AK Aziz, Saadullah G |
author_facet | Elroby, Shabaan AK Aziz, Saadullah G |
author_sort | Elroby, Shabaan AK |
collection | PubMed |
description | BACKGROUND: Chrysanthemic acid (CHA) is a major product from the photodecomposition of pyrethrin which is an important class of pesticide compounds. In the following paper, Hybrid density functional theory (DFT) calculations of the potential energy surface (PES) for three possible channels decomposition of chrysanthemic acid (cis-trans isomerization, rearrangement and fragmentation) have been carried at the B3LYP/6-311+G** level of theory. DFT was employed to optimize the geometry parameters of the reactants, transition states, intermediates and products based on detailed potential energy surfaces (PES). RESULTS: Our results suggest that all three pathways of CHA are endothermic. DFT calculations revealed that the activation barriers for cis-trans isomerization are low, leading to a thermodynamically favorable process than other two pathways. We also investigated the solvent effect on the PES using the polarizable continuum model (PCM). In addition, time-dependent density functional theory (TDDFT) calculations showed that these reactions occur in the ground state rather than in an excited state. CONCLUSION: The rearrangement process seems to be more favorable than the decomposition of CHA to carbene formation. The solvent effect calculations indicated no changes in the shape of the PES with three continua (water, ethanol and cyclohexane), although the solvents tend to stabilize all of the species. |
format | Online Article Text |
id | pubmed-3247183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32471832011-12-29 Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study Elroby, Shabaan AK Aziz, Saadullah G Chem Cent J Research Article BACKGROUND: Chrysanthemic acid (CHA) is a major product from the photodecomposition of pyrethrin which is an important class of pesticide compounds. In the following paper, Hybrid density functional theory (DFT) calculations of the potential energy surface (PES) for three possible channels decomposition of chrysanthemic acid (cis-trans isomerization, rearrangement and fragmentation) have been carried at the B3LYP/6-311+G** level of theory. DFT was employed to optimize the geometry parameters of the reactants, transition states, intermediates and products based on detailed potential energy surfaces (PES). RESULTS: Our results suggest that all three pathways of CHA are endothermic. DFT calculations revealed that the activation barriers for cis-trans isomerization are low, leading to a thermodynamically favorable process than other two pathways. We also investigated the solvent effect on the PES using the polarizable continuum model (PCM). In addition, time-dependent density functional theory (TDDFT) calculations showed that these reactions occur in the ground state rather than in an excited state. CONCLUSION: The rearrangement process seems to be more favorable than the decomposition of CHA to carbene formation. The solvent effect calculations indicated no changes in the shape of the PES with three continua (water, ethanol and cyclohexane), although the solvents tend to stabilize all of the species. BioMed Central 2011-10-30 /pmc/articles/PMC3247183/ /pubmed/22035035 http://dx.doi.org/10.1186/1752-153X-5-66 Text en Copyright ©2011 Elroby et al |
spellingShingle | Research Article Elroby, Shabaan AK Aziz, Saadullah G Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
title | Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
title_full | Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
title_fullStr | Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
title_full_unstemmed | Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
title_short | Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
title_sort | understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247183/ https://www.ncbi.nlm.nih.gov/pubmed/22035035 http://dx.doi.org/10.1186/1752-153X-5-66 |
work_keys_str_mv | AT elrobyshabaanak understandingthedecompositionreactionmechanismofchrysanthemicacidacomputationalstudy AT azizsaadullahg understandingthedecompositionreactionmechanismofchrysanthemicacidacomputationalstudy |