Cargando…
Natural Antisense Transcript: A Concomitant Engagement with Protein-Coding Transcript
The vertebrate genome contains large spans of non-coding RNA, which for the most part were considered of little functional value to the organism. Recent studies have indicated that vertebrate genomes may have stored hidden secrets in this large span of non-coding RNA, which we refer to here as “Natu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248111/ https://www.ncbi.nlm.nih.gov/pubmed/21311100 |
Sumario: | The vertebrate genome contains large spans of non-coding RNA, which for the most part were considered of little functional value to the organism. Recent studies have indicated that vertebrate genomes may have stored hidden secrets in this large span of non-coding RNA, which we refer to here as “Natural Antisense Transcripts (NATs).” NATs can be found in introns, exons, promoters, enhancers, intergenic sequences, and untranslated regions of the genome. They can be located in either the plus or minus DNA strand. NATs utilize several mechanisms that include DNA replication interference, chromatin remodeling, transcriptional interference, RNA masking, double-stranded RNA (dsRNA)-dependent mechanisms and translation interference to mechanistically regulate gene expression. Recently, NAT levels have been identified as dysregulated in various disease states. This review presents an overview of the current state of NAT biology and highlights the main points with specific examples. |
---|