Cargando…
Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L
BACKGROUND: Sucrose is the primary photosynthesis product and the principal translocating form within higher plants. Sucrose transporters (SUC/SUT) play a critical role in phloem loading and unloading. Photoassimilate transport is a major limiting factor for seed yield. Our previous research demonst...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248380/ https://www.ncbi.nlm.nih.gov/pubmed/22112023 http://dx.doi.org/10.1186/1471-2229-11-168 |
_version_ | 1782220231710605312 |
---|---|
author | Li, Fupeng Ma, Chaozhi Wang, Xia Gao, Changbin Zhang, Jianfeng Wang, Yuanyuan Cong, Na Li, Xinghua Wen, Jing Yi, Bin Shen, Jinxiong Tu, Jinxing Fu, Tingdong |
author_facet | Li, Fupeng Ma, Chaozhi Wang, Xia Gao, Changbin Zhang, Jianfeng Wang, Yuanyuan Cong, Na Li, Xinghua Wen, Jing Yi, Bin Shen, Jinxiong Tu, Jinxing Fu, Tingdong |
author_sort | Li, Fupeng |
collection | PubMed |
description | BACKGROUND: Sucrose is the primary photosynthesis product and the principal translocating form within higher plants. Sucrose transporters (SUC/SUT) play a critical role in phloem loading and unloading. Photoassimilate transport is a major limiting factor for seed yield. Our previous research demonstrated that SUT co-localizes with yield-related quantitative trait loci. This paper reports the isolation of BnA7.SUT1 alleles and their promoters and their association with yield-related traits. RESULTS: Two novel BnA7.SUT1 genes were isolated from B. napus lines 'Eagle' and 'S-1300' and designated as BnA7.SUT1.a and BnA7.SUT1.b, respectively. The BnA7.SUT1 protein exhibited typical SUT features and showed high amino acid homology with related species. Promoters of BnA7.SUT1.a and BnA7.SUT1.b were also isolated and classified as pBnA7.SUT1.a and pBnA7.SUT1.b, respectively. Four dominant sequence-characterized amplified region markers were developed to distinguish BnA7.SUT1.a and BnA7.SUT1.b. The two genes were estimated as alleles with two segregating populations (F(2 )and BC(1)) obtained by crossing '3715'×'3769'. BnA7.SUT1 was mapped to the A7 linkage group of the TN doubled haploid population. In silico analysis of 55 segmental BnA7.SUT1 alleles resulted three BnA7.SUT1 clusters: pBnA7.SUT1.a- BnA7.SUT1.a (type I), pBnA7.SUT1.b- BnA7.SUT1.a (type II), and pBnA7.SUT1.b- BnA7.SUT1.b (type III). Association analysis with a diverse panel of 55 rapeseed lines identified single nucleotide polymorphisms (SNPs) in promoter and coding domain sequences of BnA7.SUT1 that were significantly associated with one of three yield-related traits: number of effective first branches (EFB), siliques per plant (SP), and seed weight (n = 1000) (TSW) across all four environments examined. SNPs at other BnA7.SUT1 sites were also significantly associated with at least one of six yield-related traits: EFB, SP, number of seeds per silique, seed yield per plant, block yield, and TSW. Expression levels varied over various tissue/organs at the seed-filling stage, and BnA7.SUT1 expression positively correlated with EFB and TSW. CONCLUSIONS: Sequence, mapping, association, and expression analyses collectively showed significant diversity between the two BnA7.SUT1 alleles, which control some of the phenotypic variation for branch number and seed weight in B. napus consistent with expression levels. The associations between allelic variation and yield-related traits may facilitate selection of better genotypes in breeding. |
format | Online Article Text |
id | pubmed-3248380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32483802011-12-30 Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L Li, Fupeng Ma, Chaozhi Wang, Xia Gao, Changbin Zhang, Jianfeng Wang, Yuanyuan Cong, Na Li, Xinghua Wen, Jing Yi, Bin Shen, Jinxiong Tu, Jinxing Fu, Tingdong BMC Plant Biol Research Article BACKGROUND: Sucrose is the primary photosynthesis product and the principal translocating form within higher plants. Sucrose transporters (SUC/SUT) play a critical role in phloem loading and unloading. Photoassimilate transport is a major limiting factor for seed yield. Our previous research demonstrated that SUT co-localizes with yield-related quantitative trait loci. This paper reports the isolation of BnA7.SUT1 alleles and their promoters and their association with yield-related traits. RESULTS: Two novel BnA7.SUT1 genes were isolated from B. napus lines 'Eagle' and 'S-1300' and designated as BnA7.SUT1.a and BnA7.SUT1.b, respectively. The BnA7.SUT1 protein exhibited typical SUT features and showed high amino acid homology with related species. Promoters of BnA7.SUT1.a and BnA7.SUT1.b were also isolated and classified as pBnA7.SUT1.a and pBnA7.SUT1.b, respectively. Four dominant sequence-characterized amplified region markers were developed to distinguish BnA7.SUT1.a and BnA7.SUT1.b. The two genes were estimated as alleles with two segregating populations (F(2 )and BC(1)) obtained by crossing '3715'×'3769'. BnA7.SUT1 was mapped to the A7 linkage group of the TN doubled haploid population. In silico analysis of 55 segmental BnA7.SUT1 alleles resulted three BnA7.SUT1 clusters: pBnA7.SUT1.a- BnA7.SUT1.a (type I), pBnA7.SUT1.b- BnA7.SUT1.a (type II), and pBnA7.SUT1.b- BnA7.SUT1.b (type III). Association analysis with a diverse panel of 55 rapeseed lines identified single nucleotide polymorphisms (SNPs) in promoter and coding domain sequences of BnA7.SUT1 that were significantly associated with one of three yield-related traits: number of effective first branches (EFB), siliques per plant (SP), and seed weight (n = 1000) (TSW) across all four environments examined. SNPs at other BnA7.SUT1 sites were also significantly associated with at least one of six yield-related traits: EFB, SP, number of seeds per silique, seed yield per plant, block yield, and TSW. Expression levels varied over various tissue/organs at the seed-filling stage, and BnA7.SUT1 expression positively correlated with EFB and TSW. CONCLUSIONS: Sequence, mapping, association, and expression analyses collectively showed significant diversity between the two BnA7.SUT1 alleles, which control some of the phenotypic variation for branch number and seed weight in B. napus consistent with expression levels. The associations between allelic variation and yield-related traits may facilitate selection of better genotypes in breeding. BioMed Central 2011-11-23 /pmc/articles/PMC3248380/ /pubmed/22112023 http://dx.doi.org/10.1186/1471-2229-11-168 Text en Copyright ©2011 Li et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Fupeng Ma, Chaozhi Wang, Xia Gao, Changbin Zhang, Jianfeng Wang, Yuanyuan Cong, Na Li, Xinghua Wen, Jing Yi, Bin Shen, Jinxiong Tu, Jinxing Fu, Tingdong Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L |
title | Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L |
title_full | Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L |
title_fullStr | Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L |
title_full_unstemmed | Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L |
title_short | Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L |
title_sort | characterization of sucrose transporter alleles and their association with seed yield-related traits in brassica napus l |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248380/ https://www.ncbi.nlm.nih.gov/pubmed/22112023 http://dx.doi.org/10.1186/1471-2229-11-168 |
work_keys_str_mv | AT lifupeng characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT machaozhi characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT wangxia characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT gaochangbin characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT zhangjianfeng characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT wangyuanyuan characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT congna characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT lixinghua characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT wenjing characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT yibin characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT shenjinxiong characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT tujinxing characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl AT futingdong characterizationofsucrosetransporterallelesandtheirassociationwithseedyieldrelatedtraitsinbrassicanapusl |