Cargando…
Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks
The inference of gene regulatory networks from gene expression data is a difficult problem because the performance of the inference algorithms depends on a multitude of different factors. In this paper we study two of these. First, we investigate the influence of discrete mutual information (MI) est...
Autores principales: | de Matos Simoes, Ricardo, Emmert-Streib, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248437/ https://www.ncbi.nlm.nih.gov/pubmed/22242113 http://dx.doi.org/10.1371/journal.pone.0029279 |
Ejemplares similares
-
Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data
por: Emmert-Streib, Frank, et al.
Publicado: (2012) -
Bagging Statistical Network Inference from Large-Scale Gene Expression Data
por: de Matos Simoes, Ricardo, et al.
Publicado: (2012) -
Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data
por: Moore, Daniel, et al.
Publicado: (2019) -
B-cell lymphoma gene regulatory networks: biological consistency among inference methods
por: de Matos Simoes, Ricardo, et al.
Publicado: (2013) -
Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data
por: Matos Simoes, Ricardo de, et al.
Publicado: (2015)