Cargando…
Smooth Isotonic Regression: A New Method to Calibrate Predictive Models
Predictive models are critical for risk adjustment in clinical research. Evaluation of supervised learning models often focuses on predictive model discrimination, sometimes neglecting the assessment of their calibration. Recent research in machine learning has shown the benefits of calibrating pred...
Autores principales: | Jiang, Xiaoqian, Osl, Melanie, Kim, Jihoon, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248752/ https://www.ncbi.nlm.nih.gov/pubmed/22211175 |
Ejemplares similares
-
Calibrating predictive model estimates to support personalized medicine
por: Jiang, Xiaoqian, et al.
Publicado: (2011) -
I-spline Smoothing for Calibrating Predictive Models
por: Wu, Yuan, et al.
Publicado: (2012) -
Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): An Algorithm for Joint Optimization of Discrimination and Calibration
por: Jiang, Xiaoqian, et al.
Publicado: (2012) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
Prediction of MicroRNA Precursors Using Parsimonious Feature Sets
por: Stepanowsky, Petra, et al.
Publicado: (2014)