Cargando…

Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen

PURPOSE: Toxicity caused by acetaminophen and its toxic mechanisms in the liver have been widely studied, including effects involving metabolism and oxidative stress. However, its adverse effects on heart have not been sufficiently investigated. This study evaluated the cardiac influence and molecul...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Seon Mi, Kil, Hong Ryang, Park, Kwangsik, Noh, Chung Il
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Yonsei University College of Medicine 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250324/
https://www.ncbi.nlm.nih.gov/pubmed/22187249
http://dx.doi.org/10.3349/ymj.2012.53.1.172
_version_ 1782220446615207936
author Jin, Seon Mi
Kil, Hong Ryang
Park, Kwangsik
Noh, Chung Il
author_facet Jin, Seon Mi
Kil, Hong Ryang
Park, Kwangsik
Noh, Chung Il
author_sort Jin, Seon Mi
collection PubMed
description PURPOSE: Toxicity caused by acetaminophen and its toxic mechanisms in the liver have been widely studied, including effects involving metabolism and oxidative stress. However, its adverse effects on heart have not been sufficiently investigated. This study evaluated the cardiac influence and molecular events occurring within the myocardium in rats treated with a dose of acetaminophen large enough to induce conventional liver damage. MATERIALS AND METHODS: Male rats were orally administered a single dose of acetaminophen at 1,000 mg/kg-body weight, and subsequently examined for conventional toxicological parameters and for gene expression alterations to both the heart and liver 24 hours after administration. RESULTS: Following treatment, serum biochemical parameters including aspartate aminotransferase and alanine aminotransferase were elevated. Histopathological alterations of necrosis were observed in the liver, but not in the heart. However, alterations in gene expression were observed in both the liver and heart 24 hours after dosing. Transcriptional profiling revealed that acetaminophen changed the expression of genes implicated in oxidative stress, inflammatory processes, and apoptosis in the heart as well as in the liver. The numbers of up-regulated and down-regulated genes in the heart were 271 and 81, respectively, based on a two-fold criterion. CONCLUSION: The induced expression of genes implicated in oxidative stress and inflammatory processes in the myocardium reflects molecular levels of injury caused by acetaminophen (APAP), which could not be identified by conventional histopathology.
format Online
Article
Text
id pubmed-3250324
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Yonsei University College of Medicine
record_format MEDLINE/PubMed
spelling pubmed-32503242012-01-09 Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen Jin, Seon Mi Kil, Hong Ryang Park, Kwangsik Noh, Chung Il Yonsei Med J Original Article PURPOSE: Toxicity caused by acetaminophen and its toxic mechanisms in the liver have been widely studied, including effects involving metabolism and oxidative stress. However, its adverse effects on heart have not been sufficiently investigated. This study evaluated the cardiac influence and molecular events occurring within the myocardium in rats treated with a dose of acetaminophen large enough to induce conventional liver damage. MATERIALS AND METHODS: Male rats were orally administered a single dose of acetaminophen at 1,000 mg/kg-body weight, and subsequently examined for conventional toxicological parameters and for gene expression alterations to both the heart and liver 24 hours after administration. RESULTS: Following treatment, serum biochemical parameters including aspartate aminotransferase and alanine aminotransferase were elevated. Histopathological alterations of necrosis were observed in the liver, but not in the heart. However, alterations in gene expression were observed in both the liver and heart 24 hours after dosing. Transcriptional profiling revealed that acetaminophen changed the expression of genes implicated in oxidative stress, inflammatory processes, and apoptosis in the heart as well as in the liver. The numbers of up-regulated and down-regulated genes in the heart were 271 and 81, respectively, based on a two-fold criterion. CONCLUSION: The induced expression of genes implicated in oxidative stress and inflammatory processes in the myocardium reflects molecular levels of injury caused by acetaminophen (APAP), which could not be identified by conventional histopathology. Yonsei University College of Medicine 2012-01-01 2011-11-30 /pmc/articles/PMC3250324/ /pubmed/22187249 http://dx.doi.org/10.3349/ymj.2012.53.1.172 Text en © Copyright: Yonsei University College of Medicine 2012 http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Jin, Seon Mi
Kil, Hong Ryang
Park, Kwangsik
Noh, Chung Il
Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen
title Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen
title_full Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen
title_fullStr Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen
title_full_unstemmed Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen
title_short Gene Expression in Rat Hearts Following Oral Administration of a Single Hepatotoxic Dose of Acetaminophen
title_sort gene expression in rat hearts following oral administration of a single hepatotoxic dose of acetaminophen
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250324/
https://www.ncbi.nlm.nih.gov/pubmed/22187249
http://dx.doi.org/10.3349/ymj.2012.53.1.172
work_keys_str_mv AT jinseonmi geneexpressioninratheartsfollowingoraladministrationofasinglehepatotoxicdoseofacetaminophen
AT kilhongryang geneexpressioninratheartsfollowingoraladministrationofasinglehepatotoxicdoseofacetaminophen
AT parkkwangsik geneexpressioninratheartsfollowingoraladministrationofasinglehepatotoxicdoseofacetaminophen
AT nohchungil geneexpressioninratheartsfollowingoraladministrationofasinglehepatotoxicdoseofacetaminophen