Cargando…
Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae
Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mecha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250475/ https://www.ncbi.nlm.nih.gov/pubmed/22235327 http://dx.doi.org/10.1371/journal.pone.0029700 |
_version_ | 1782220474597507072 |
---|---|
author | Kaňa, Radek Kotabová, Eva Sobotka, Roman Prášil, Ondřej |
author_facet | Kaňa, Radek Kotabová, Eva Sobotka, Roman Prášil, Ondřej |
author_sort | Kaňa, Radek |
collection | PubMed |
description | Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching. |
format | Online Article Text |
id | pubmed-3250475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32504752012-01-10 Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae Kaňa, Radek Kotabová, Eva Sobotka, Roman Prášil, Ondřej PLoS One Research Article Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching. Public Library of Science 2012-01-03 /pmc/articles/PMC3250475/ /pubmed/22235327 http://dx.doi.org/10.1371/journal.pone.0029700 Text en Kaňa et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kaňa, Radek Kotabová, Eva Sobotka, Roman Prášil, Ondřej Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae |
title | Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae |
title_full | Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae |
title_fullStr | Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae |
title_full_unstemmed | Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae |
title_short | Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae |
title_sort | non-photochemical quenching in cryptophyte alga rhodomonas salina is located in chlorophyll a/c antennae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250475/ https://www.ncbi.nlm.nih.gov/pubmed/22235327 http://dx.doi.org/10.1371/journal.pone.0029700 |
work_keys_str_mv | AT kanaradek nonphotochemicalquenchingincryptophytealgarhodomonassalinaislocatedinchlorophyllacantennae AT kotabovaeva nonphotochemicalquenchingincryptophytealgarhodomonassalinaislocatedinchlorophyllacantennae AT sobotkaroman nonphotochemicalquenchingincryptophytealgarhodomonassalinaislocatedinchlorophyllacantennae AT prasilondrej nonphotochemicalquenchingincryptophytealgarhodomonassalinaislocatedinchlorophyllacantennae |