Cargando…
Glucose-Induced O(2) Consumption Activates Hypoxia Inducible Factors 1 and 2 in Rat Insulin-Secreting Pancreatic Beta-Cells
BACKGROUND: Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-dependent manner. METHODOLOGY/PRINCIPAL FINDINGS: Isol...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250482/ https://www.ncbi.nlm.nih.gov/pubmed/22235342 http://dx.doi.org/10.1371/journal.pone.0029807 |
Sumario: | BACKGROUND: Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-dependent manner. METHODOLOGY/PRINCIPAL FINDINGS: Isolated rat islets and insulin-secreting INS-1E cells were stimulated with nutrients at various pO(2) values or treated with the HIF activator CoCl(2). HIF-target gene mRNA levels and HIF subunit protein levels were measured by real-time RT-PCR, Western Blot and immunohistochemistry. The formation of pimonidazole-protein adducts was used as an indicator of hypoxia. In INS-1E and islet beta-cells, glucose concentration-dependently stimulated formation of pimonidazole-protein adducts, HIF1 and HIF2 nuclear expression and HIF-target gene mRNA levels to a lesser extent than CoCl(2) or a four-fold reduction in pO(2). Islets also showed signs of HIF activation in diabetic Lepr(db/db) but not non-diabetic Lepr(db/+) mice. In vitro, these glucose effects were reproduced by nutrient secretagogues that bypass glycolysis, and were inhibited by a three-fold increase in pO(2) or by inhibitors of Ca(2+) influx and insulin secretion. In INS-1E cells, small interfering RNA-mediated knockdown of Hif1α and Hif2α, alone or in combination, indicated that the stimulation of glycolytic enzyme mRNA levels depended on both HIF isoforms while the vasodilating peptide adrenomedullin was a HIF2-specific target gene. CONCLUSIONS/SIGNIFICANCE: Glucose-induced O(2) consumption creates an intracellular hypoxia that activates HIF1 and HIF2 in rat beta-cells, and this glucose effect contributes, together with the activation of other transcription factors, to the glucose stimulation of expression of some glycolytic enzymes and other hypoxia response genes. |
---|