Cargando…
Regulation of endothelial cell plasticity by TGF-β
Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essenti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250609/ https://www.ncbi.nlm.nih.gov/pubmed/21866313 http://dx.doi.org/10.1007/s00441-011-1222-6 |
_version_ | 1782220491177590784 |
---|---|
author | van Meeteren, Laurens A. ten Dijke, Peter |
author_facet | van Meeteren, Laurens A. ten Dijke, Peter |
author_sort | van Meeteren, Laurens A. |
collection | PubMed |
description | Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essential during embryonic development and tissue regeneration. Interestingly, it also plays a role in pathological conditions like fibrosis of organs such as the heart and kidney. In addition, EndMT contributes to the generation of cancer associated fibroblasts that are known to influence the tumor-microenvironment favorable for the tumor cells. EndMT is a form of the more widely known and studied Epithelial-to-Mesenchymal Transition (EMT). Like EMT, EndMT can be induced by transforming growth factor (TGF)-β. Indeed many studies have pointed to the important role of TGF-β receptor/Smad signaling and downstream targets, such as Snail transcriptional repressor in EndMT. By selective targeting of TGF-β receptor signaling pathological EndMT may be inhibited for the therapeutic benefit of patients with cancer and fibrosis. |
format | Online Article Text |
id | pubmed-3250609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-32506092012-01-11 Regulation of endothelial cell plasticity by TGF-β van Meeteren, Laurens A. ten Dijke, Peter Cell Tissue Res Review Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essential during embryonic development and tissue regeneration. Interestingly, it also plays a role in pathological conditions like fibrosis of organs such as the heart and kidney. In addition, EndMT contributes to the generation of cancer associated fibroblasts that are known to influence the tumor-microenvironment favorable for the tumor cells. EndMT is a form of the more widely known and studied Epithelial-to-Mesenchymal Transition (EMT). Like EMT, EndMT can be induced by transforming growth factor (TGF)-β. Indeed many studies have pointed to the important role of TGF-β receptor/Smad signaling and downstream targets, such as Snail transcriptional repressor in EndMT. By selective targeting of TGF-β receptor signaling pathological EndMT may be inhibited for the therapeutic benefit of patients with cancer and fibrosis. Springer-Verlag 2011-08-25 2012 /pmc/articles/PMC3250609/ /pubmed/21866313 http://dx.doi.org/10.1007/s00441-011-1222-6 Text en © The Author(s) 2011 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Review van Meeteren, Laurens A. ten Dijke, Peter Regulation of endothelial cell plasticity by TGF-β |
title | Regulation of endothelial cell plasticity by TGF-β |
title_full | Regulation of endothelial cell plasticity by TGF-β |
title_fullStr | Regulation of endothelial cell plasticity by TGF-β |
title_full_unstemmed | Regulation of endothelial cell plasticity by TGF-β |
title_short | Regulation of endothelial cell plasticity by TGF-β |
title_sort | regulation of endothelial cell plasticity by tgf-β |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250609/ https://www.ncbi.nlm.nih.gov/pubmed/21866313 http://dx.doi.org/10.1007/s00441-011-1222-6 |
work_keys_str_mv | AT vanmeeterenlaurensa regulationofendothelialcellplasticitybytgfb AT tendijkepeter regulationofendothelialcellplasticitybytgfb |