Cargando…
_version_ 1782220541494558720
author Djebali, Sarah
Lagarde, Julien
Kapranov, Philipp
Lacroix, Vincent
Borel, Christelle
Mudge, Jonathan M.
Howald, Cédric
Foissac, Sylvain
Ucla, Catherine
Chrast, Jacqueline
Ribeca, Paolo
Martin, David
Murray, Ryan R.
Yang, Xinping
Ghamsari, Lila
Lin, Chenwei
Bell, Ian
Dumais, Erica
Drenkow, Jorg
Tress, Michael L.
Gelpí, Josep Lluís
Orozco, Modesto
Valencia, Alfonso
van Berkum, Nynke L.
Lajoie, Bryan R.
Vidal, Marc
Stamatoyannopoulos, John
Batut, Philippe
Dobin, Alex
Harrow, Jennifer
Hubbard, Tim
Dekker, Job
Frankish, Adam
Salehi-Ashtiani, Kourosh
Reymond, Alexandre
Antonarakis, Stylianos E.
Guigó, Roderic
Gingeras, Thomas R.
author_facet Djebali, Sarah
Lagarde, Julien
Kapranov, Philipp
Lacroix, Vincent
Borel, Christelle
Mudge, Jonathan M.
Howald, Cédric
Foissac, Sylvain
Ucla, Catherine
Chrast, Jacqueline
Ribeca, Paolo
Martin, David
Murray, Ryan R.
Yang, Xinping
Ghamsari, Lila
Lin, Chenwei
Bell, Ian
Dumais, Erica
Drenkow, Jorg
Tress, Michael L.
Gelpí, Josep Lluís
Orozco, Modesto
Valencia, Alfonso
van Berkum, Nynke L.
Lajoie, Bryan R.
Vidal, Marc
Stamatoyannopoulos, John
Batut, Philippe
Dobin, Alex
Harrow, Jennifer
Hubbard, Tim
Dekker, Job
Frankish, Adam
Salehi-Ashtiani, Kourosh
Reymond, Alexandre
Antonarakis, Stylianos E.
Guigó, Roderic
Gingeras, Thomas R.
author_sort Djebali, Sarah
collection PubMed
description The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
format Online
Article
Text
id pubmed-3251577
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32515772012-01-11 Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells Djebali, Sarah Lagarde, Julien Kapranov, Philipp Lacroix, Vincent Borel, Christelle Mudge, Jonathan M. Howald, Cédric Foissac, Sylvain Ucla, Catherine Chrast, Jacqueline Ribeca, Paolo Martin, David Murray, Ryan R. Yang, Xinping Ghamsari, Lila Lin, Chenwei Bell, Ian Dumais, Erica Drenkow, Jorg Tress, Michael L. Gelpí, Josep Lluís Orozco, Modesto Valencia, Alfonso van Berkum, Nynke L. Lajoie, Bryan R. Vidal, Marc Stamatoyannopoulos, John Batut, Philippe Dobin, Alex Harrow, Jennifer Hubbard, Tim Dekker, Job Frankish, Adam Salehi-Ashtiani, Kourosh Reymond, Alexandre Antonarakis, Stylianos E. Guigó, Roderic Gingeras, Thomas R. PLoS One Research Article The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. Public Library of Science 2012-01-04 /pmc/articles/PMC3251577/ /pubmed/22238572 http://dx.doi.org/10.1371/journal.pone.0028213 Text en Djebali et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Djebali, Sarah
Lagarde, Julien
Kapranov, Philipp
Lacroix, Vincent
Borel, Christelle
Mudge, Jonathan M.
Howald, Cédric
Foissac, Sylvain
Ucla, Catherine
Chrast, Jacqueline
Ribeca, Paolo
Martin, David
Murray, Ryan R.
Yang, Xinping
Ghamsari, Lila
Lin, Chenwei
Bell, Ian
Dumais, Erica
Drenkow, Jorg
Tress, Michael L.
Gelpí, Josep Lluís
Orozco, Modesto
Valencia, Alfonso
van Berkum, Nynke L.
Lajoie, Bryan R.
Vidal, Marc
Stamatoyannopoulos, John
Batut, Philippe
Dobin, Alex
Harrow, Jennifer
Hubbard, Tim
Dekker, Job
Frankish, Adam
Salehi-Ashtiani, Kourosh
Reymond, Alexandre
Antonarakis, Stylianos E.
Guigó, Roderic
Gingeras, Thomas R.
Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
title Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
title_full Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
title_fullStr Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
title_full_unstemmed Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
title_short Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
title_sort evidence for transcript networks composed of chimeric rnas in human cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251577/
https://www.ncbi.nlm.nih.gov/pubmed/22238572
http://dx.doi.org/10.1371/journal.pone.0028213
work_keys_str_mv AT djebalisarah evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT lagardejulien evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT kapranovphilipp evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT lacroixvincent evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT borelchristelle evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT mudgejonathanm evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT howaldcedric evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT foissacsylvain evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT uclacatherine evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT chrastjacqueline evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT ribecapaolo evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT martindavid evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT murrayryanr evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT yangxinping evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT ghamsarilila evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT linchenwei evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT bellian evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT dumaiserica evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT drenkowjorg evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT tressmichaell evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT gelpijoseplluis evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT orozcomodesto evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT valenciaalfonso evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT vanberkumnynkel evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT lajoiebryanr evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT vidalmarc evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT stamatoyannopoulosjohn evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT batutphilippe evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT dobinalex evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT harrowjennifer evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT hubbardtim evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT dekkerjob evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT frankishadam evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT salehiashtianikourosh evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT reymondalexandre evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT antonarakisstylianose evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT guigoroderic evidencefortranscriptnetworkscomposedofchimericrnasinhumancells
AT gingerasthomasr evidencefortranscriptnetworkscomposedofchimericrnasinhumancells