Cargando…
Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251577/ https://www.ncbi.nlm.nih.gov/pubmed/22238572 http://dx.doi.org/10.1371/journal.pone.0028213 |
_version_ | 1782220541494558720 |
---|---|
author | Djebali, Sarah Lagarde, Julien Kapranov, Philipp Lacroix, Vincent Borel, Christelle Mudge, Jonathan M. Howald, Cédric Foissac, Sylvain Ucla, Catherine Chrast, Jacqueline Ribeca, Paolo Martin, David Murray, Ryan R. Yang, Xinping Ghamsari, Lila Lin, Chenwei Bell, Ian Dumais, Erica Drenkow, Jorg Tress, Michael L. Gelpí, Josep Lluís Orozco, Modesto Valencia, Alfonso van Berkum, Nynke L. Lajoie, Bryan R. Vidal, Marc Stamatoyannopoulos, John Batut, Philippe Dobin, Alex Harrow, Jennifer Hubbard, Tim Dekker, Job Frankish, Adam Salehi-Ashtiani, Kourosh Reymond, Alexandre Antonarakis, Stylianos E. Guigó, Roderic Gingeras, Thomas R. |
author_facet | Djebali, Sarah Lagarde, Julien Kapranov, Philipp Lacroix, Vincent Borel, Christelle Mudge, Jonathan M. Howald, Cédric Foissac, Sylvain Ucla, Catherine Chrast, Jacqueline Ribeca, Paolo Martin, David Murray, Ryan R. Yang, Xinping Ghamsari, Lila Lin, Chenwei Bell, Ian Dumais, Erica Drenkow, Jorg Tress, Michael L. Gelpí, Josep Lluís Orozco, Modesto Valencia, Alfonso van Berkum, Nynke L. Lajoie, Bryan R. Vidal, Marc Stamatoyannopoulos, John Batut, Philippe Dobin, Alex Harrow, Jennifer Hubbard, Tim Dekker, Job Frankish, Adam Salehi-Ashtiani, Kourosh Reymond, Alexandre Antonarakis, Stylianos E. Guigó, Roderic Gingeras, Thomas R. |
author_sort | Djebali, Sarah |
collection | PubMed |
description | The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. |
format | Online Article Text |
id | pubmed-3251577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32515772012-01-11 Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells Djebali, Sarah Lagarde, Julien Kapranov, Philipp Lacroix, Vincent Borel, Christelle Mudge, Jonathan M. Howald, Cédric Foissac, Sylvain Ucla, Catherine Chrast, Jacqueline Ribeca, Paolo Martin, David Murray, Ryan R. Yang, Xinping Ghamsari, Lila Lin, Chenwei Bell, Ian Dumais, Erica Drenkow, Jorg Tress, Michael L. Gelpí, Josep Lluís Orozco, Modesto Valencia, Alfonso van Berkum, Nynke L. Lajoie, Bryan R. Vidal, Marc Stamatoyannopoulos, John Batut, Philippe Dobin, Alex Harrow, Jennifer Hubbard, Tim Dekker, Job Frankish, Adam Salehi-Ashtiani, Kourosh Reymond, Alexandre Antonarakis, Stylianos E. Guigó, Roderic Gingeras, Thomas R. PLoS One Research Article The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. Public Library of Science 2012-01-04 /pmc/articles/PMC3251577/ /pubmed/22238572 http://dx.doi.org/10.1371/journal.pone.0028213 Text en Djebali et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Djebali, Sarah Lagarde, Julien Kapranov, Philipp Lacroix, Vincent Borel, Christelle Mudge, Jonathan M. Howald, Cédric Foissac, Sylvain Ucla, Catherine Chrast, Jacqueline Ribeca, Paolo Martin, David Murray, Ryan R. Yang, Xinping Ghamsari, Lila Lin, Chenwei Bell, Ian Dumais, Erica Drenkow, Jorg Tress, Michael L. Gelpí, Josep Lluís Orozco, Modesto Valencia, Alfonso van Berkum, Nynke L. Lajoie, Bryan R. Vidal, Marc Stamatoyannopoulos, John Batut, Philippe Dobin, Alex Harrow, Jennifer Hubbard, Tim Dekker, Job Frankish, Adam Salehi-Ashtiani, Kourosh Reymond, Alexandre Antonarakis, Stylianos E. Guigó, Roderic Gingeras, Thomas R. Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells |
title | Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells |
title_full | Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells |
title_fullStr | Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells |
title_full_unstemmed | Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells |
title_short | Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells |
title_sort | evidence for transcript networks composed of chimeric rnas in human cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251577/ https://www.ncbi.nlm.nih.gov/pubmed/22238572 http://dx.doi.org/10.1371/journal.pone.0028213 |
work_keys_str_mv | AT djebalisarah evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT lagardejulien evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT kapranovphilipp evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT lacroixvincent evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT borelchristelle evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT mudgejonathanm evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT howaldcedric evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT foissacsylvain evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT uclacatherine evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT chrastjacqueline evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT ribecapaolo evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT martindavid evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT murrayryanr evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT yangxinping evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT ghamsarilila evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT linchenwei evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT bellian evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT dumaiserica evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT drenkowjorg evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT tressmichaell evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT gelpijoseplluis evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT orozcomodesto evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT valenciaalfonso evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT vanberkumnynkel evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT lajoiebryanr evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT vidalmarc evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT stamatoyannopoulosjohn evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT batutphilippe evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT dobinalex evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT harrowjennifer evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT hubbardtim evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT dekkerjob evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT frankishadam evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT salehiashtianikourosh evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT reymondalexandre evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT antonarakisstylianose evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT guigoroderic evidencefortranscriptnetworkscomposedofchimericrnasinhumancells AT gingerasthomasr evidencefortranscriptnetworkscomposedofchimericrnasinhumancells |