Cargando…

Intrinsic tethering activity of endosomal Rab proteins

Rab small G-proteins control membrane trafficking events required for a multitude of processes including secretion, lipid metabolism, antigen presentation, and growth factor signaling. Rabs recruit effectors that mediate diverse functions including vesicle tethering and fusion. However, many mechani...

Descripción completa

Detalles Bibliográficos
Autores principales: Lo, Sheng-Ying, Brett, Christopher L., Plemel, Rachael L., Vignali, Marissa, Fields, Stanley, Gonen, Tamir, Merz, Alexey J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252480/
https://www.ncbi.nlm.nih.gov/pubmed/22157956
http://dx.doi.org/10.1038/nsmb.2162
Descripción
Sumario:Rab small G-proteins control membrane trafficking events required for a multitude of processes including secretion, lipid metabolism, antigen presentation, and growth factor signaling. Rabs recruit effectors that mediate diverse functions including vesicle tethering and fusion. However, many mechanistic questions about Rab-regulated vesicle tethering are unresolved. Using chemically defined reaction systems we discovered that Vps21, a Saccharomyces cerevisiae ortholog of mammalian endosomal Rab5, functions in trans with itself and with at least two other endosomal Rabs to directly mediate GTP-dependent tethering. Vps21-mediated tethering was stringently and reversibly regulated by an upstream activator, Vps9, and an inhibitor, Gyp1, which were sufficient to drive dynamic cycles of tethering and de-tethering. These experiments reveal an unexpected mode of tethering by endocytic Rabs. In our working model, the intrinsic tethering capacity Vps21 operates in concert with conventional effectors and SNAREs to drive efficient docking and fusion.