Cargando…
Non-coding rRNA-mediated preferential killing in cancer cells is enhanced by suppression of autophagy in non-transformed counterpart
Interest to anticancer agents targeting rRNA biogenesis is growing. Cis-non-coding rRNAs, alternative to primary rRNA, have been shown to regulate rRNA biogenesis. We have recently detected bidirectional non-coding rRNAs that carry ribozyme-like properties. Anti-antisense oligonucleotides complement...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252735/ https://www.ncbi.nlm.nih.gov/pubmed/22158478 http://dx.doi.org/10.1038/cddis.2011.110 |
Sumario: | Interest to anticancer agents targeting rRNA biogenesis is growing. Cis-non-coding rRNAs, alternative to primary rRNA, have been shown to regulate rRNA biogenesis. We have recently detected bidirectional non-coding rRNAs that carry ribozyme-like properties. Anti-antisense oligonucleotides complementary to antisense non-coding rRNAs markedly stabilized the bidirectional transcripts and induced cell death in mouse lung cells. Here, we demonstrated that the same oligonucleotide killed mouse lung-cancer cells preferentially, compared with non-cancer sister lines, suggesting its potential utility for cancer treatment. A human version of anti-antisense oligonucleotide, complementary to an rDNA intergenic site, mediated apoptosis primarily in cancer cells. Autophagic activation was largely undifferentiable between the anti-antisense and other oligonucleotides and accounted for the undesired cytotoxicity in non-cancer cells. Co-treatment with chloroquine, an autophagy inhibitor, reduced cytotoxicity in the non-cancer cells, but retained the anti-antisense-mediated killings in cancer cells. Furthermore, the anti-antisense oligonucleotide stabilized bidirectional non-coding rRNAs predominantly in human cancer cells and perturbed rRNA biogenesis. Contributions of non-coding rRNAs to cell death were proven by transfection of in –vitro-synthesized transcripts. Taken together, cancer/non-cancer cells respond differently to stabilization of non-coding rRNAs, and such differential responses provide a window of opportunity to enhance anticancer efficacy. |
---|