Cargando…

βB1-Crystallin: Thermodynamic Profiles of Molecular Interactions

BACKGROUND: β-Crystallins are structural proteins maintaining eye lens transparency and opacification. Previous work demonstrated that dimerization of both βA3 and βB2 crystallins (βA3 and βB2) involves endothermic enthalpy of association (∼8 kcal/mol) mediated by hydrophobic interactions. METHODOLO...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolinska, Monika B., Wingfield, Paul T., Sergeev, Yuri V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253074/
https://www.ncbi.nlm.nih.gov/pubmed/22238594
http://dx.doi.org/10.1371/journal.pone.0029227
Descripción
Sumario:BACKGROUND: β-Crystallins are structural proteins maintaining eye lens transparency and opacification. Previous work demonstrated that dimerization of both βA3 and βB2 crystallins (βA3 and βB2) involves endothermic enthalpy of association (∼8 kcal/mol) mediated by hydrophobic interactions. METHODOLOGY/PRINCIPAL FINDINGS: Thermodynamic profiles of the associations of dimeric βA3 and βB1 and tetrameric βB1/βA3 were measured using sedimentation equilibrium. The homo- and heteromolecular associations of βB1 crystallin are dominated by exothermic enthalpy (−13.3 and −24.5 kcal/mol, respectively). CONCLUSIONS/SIGNIFICANCE: Global thermodynamics of βB1 interactions suggest a role in the formation of stable protein complexes in the lens via specific van der Waals contacts, hydrogen bonds and salt bridges whereas those β-crystallins which associate by predominately hydrophobic forces participate in a weaker protein associations.