Cargando…
Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production
Both hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentration...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253589/ https://www.ncbi.nlm.nih.gov/pubmed/22355729 http://dx.doi.org/10.1038/srep00215 |
_version_ | 1782220750048985088 |
---|---|
author | Takeshita, Toru Suzuki, Nao Nakano, Yoshio Yasui, Masaki Yoneda, Masahiro Shimazaki, Yoshihiro Hirofuji, Takao Yamashita, Yoshihisa |
author_facet | Takeshita, Toru Suzuki, Nao Nakano, Yoshio Yasui, Masaki Yoneda, Masahiro Shimazaki, Yoshihiro Hirofuji, Takao Yamashita, Yoshihisa |
author_sort | Takeshita, Toru |
collection | PubMed |
description | Both hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n = 14; high CH(3)SH but low H(2)S concentrations, n = 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H(2)S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H(2)S and CH(3)SH in the oral cavity. |
format | Online Article Text |
id | pubmed-3253589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-32535892012-01-10 Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production Takeshita, Toru Suzuki, Nao Nakano, Yoshio Yasui, Masaki Yoneda, Masahiro Shimazaki, Yoshihiro Hirofuji, Takao Yamashita, Yoshihisa Sci Rep Article Both hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n = 14; high CH(3)SH but low H(2)S concentrations, n = 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H(2)S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H(2)S and CH(3)SH in the oral cavity. Nature Publishing Group 2012-01-09 /pmc/articles/PMC3253589/ /pubmed/22355729 http://dx.doi.org/10.1038/srep00215 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Takeshita, Toru Suzuki, Nao Nakano, Yoshio Yasui, Masaki Yoneda, Masahiro Shimazaki, Yoshihiro Hirofuji, Takao Yamashita, Yoshihisa Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
title | Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
title_full | Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
title_fullStr | Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
title_full_unstemmed | Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
title_short | Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
title_sort | discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253589/ https://www.ncbi.nlm.nih.gov/pubmed/22355729 http://dx.doi.org/10.1038/srep00215 |
work_keys_str_mv | AT takeshitatoru discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT suzukinao discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT nakanoyoshio discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT yasuimasaki discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT yonedamasahiro discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT shimazakiyoshihiro discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT hirofujitakao discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction AT yamashitayoshihisa discriminationoftheoralmicrobiotaassociatedwithhighhydrogensulfideandmethylmercaptanproduction |