Cargando…
A general method to determine twinning elements
The fundamental theory of crystal twinning has been long established, leading to a significant advance in understanding the nature of this physical phenomenon. However, there remains a substantial gap between the elaborate theory and the practical determination of twinning elements. This paper propo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253729/ https://www.ncbi.nlm.nih.gov/pubmed/22477779 http://dx.doi.org/10.1107/S0021889810037180 |
Sumario: | The fundamental theory of crystal twinning has been long established, leading to a significant advance in understanding the nature of this physical phenomenon. However, there remains a substantial gap between the elaborate theory and the practical determination of twinning elements. This paper proposes a direct and simple method – valid for any crystal structure and based on the minimum shear criterion – to calculate various twinning elements from the experimentally determined twinning plane for Type I twins or the twinning direction for Type II twins. Without additional efforts, it is generally applicable to identify and predict possible twinning modes occurring in a variety of crystalline solids. Therefore, the present method is a promising tool to characterize twinning elements, especially for those materials with complex crystal structure. |
---|