Cargando…
Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?
Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254689/ https://www.ncbi.nlm.nih.gov/pubmed/22021569 http://dx.doi.org/10.1093/jxb/err321 |
_version_ | 1782220906619207680 |
---|---|
author | Archontoulis, S. V. Yin, X. Vos, J. Danalatos, N. G. Struik, P. C. |
author_facet | Archontoulis, S. V. Yin, X. Vos, J. Danalatos, N. G. Struik, P. C. |
author_sort | Archontoulis, S. V. |
collection | PubMed |
description | Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)–C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)–I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)–C(i) or from A(n)–I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)–I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. |
format | Online Article Text |
id | pubmed-3254689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-32546892012-01-11 Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? Archontoulis, S. V. Yin, X. Vos, J. Danalatos, N. G. Struik, P. C. J Exp Bot Research Papers Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)–C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)–I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)–C(i) or from A(n)–I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)–I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. Oxford University Press 2012-01 2011-10-21 /pmc/articles/PMC3254689/ /pubmed/22021569 http://dx.doi.org/10.1093/jxb/err321 Text en © 2011 The Author(s). http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) |
spellingShingle | Research Papers Archontoulis, S. V. Yin, X. Vos, J. Danalatos, N. G. Struik, P. C. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
title | Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
title_full | Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
title_fullStr | Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
title_full_unstemmed | Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
title_short | Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
title_sort | leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254689/ https://www.ncbi.nlm.nih.gov/pubmed/22021569 http://dx.doi.org/10.1093/jxb/err321 |
work_keys_str_mv | AT archontoulissv leafphotosynthesisandrespirationofthreebioenergycropsinrelationtotemperatureandleafnitrogenhowconservedarebiochemicalmodelparametersamongcropspecies AT yinx leafphotosynthesisandrespirationofthreebioenergycropsinrelationtotemperatureandleafnitrogenhowconservedarebiochemicalmodelparametersamongcropspecies AT vosj leafphotosynthesisandrespirationofthreebioenergycropsinrelationtotemperatureandleafnitrogenhowconservedarebiochemicalmodelparametersamongcropspecies AT danalatosng leafphotosynthesisandrespirationofthreebioenergycropsinrelationtotemperatureandleafnitrogenhowconservedarebiochemicalmodelparametersamongcropspecies AT struikpc leafphotosynthesisandrespirationofthreebioenergycropsinrelationtotemperatureandleafnitrogenhowconservedarebiochemicalmodelparametersamongcropspecies |