Cargando…

Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold’ kiwifruit

Fruit ripening in response to treatments with propylene, 1-methycyclopropene (1-MCP), and low temperature was characterized in ‘Sanuki Gold’ kiwifruit, Actinidia chinensis Planch. Propylene treatment immediately induced rapid fruit softening, increased AC-PG (polygalacturonase) and AC-EXP (expansin)...

Descripción completa

Detalles Bibliográficos
Autores principales: Mworia, Eric G., Yoshikawa, Takashi, Salikon, Nadiah, Oda, Chisato, Asiche, William O., Yokotani, Naoki, Abe, Daigo, Ushijima, Koichiro, Nakano, Ryohei, Kubo, Yasutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254691/
https://www.ncbi.nlm.nih.gov/pubmed/22058408
http://dx.doi.org/10.1093/jxb/err324
Descripción
Sumario:Fruit ripening in response to treatments with propylene, 1-methycyclopropene (1-MCP), and low temperature was characterized in ‘Sanuki Gold’ kiwifruit, Actinidia chinensis Planch. Propylene treatment immediately induced rapid fruit softening, increased AC-PG (polygalacturonase) and AC-EXP (expansin) mRNA accumulation, and stimulated an increase in the soluble solid concentration (SSC) and a decrease in titratable acidity (TA). After 3 d exposure to propylene, ethylene production and AC-PL (pectate lyase) mRNA accumulation were observed. 1-MCP treatment after 24 h exposure to propylene eliminated AC-PG mRNA accumulation and suppressed continued changes in SSC and TA. Application of 1-MCP at the start of the treatment, followed by continuous propylene exposure, markedly delayed fruit softening, and the expression of the cell wall-modifying genes, and changes in the SSC and TA, indicating that kiwifruit become insensitive to ethylene at least for 3 d following 1-MCP exposure. Surprisingly, significant fruit softening, mRNA accumulation of AC-PG, AC-PL, and AC-EXP, and decreased TA were observed without ethylene production in intact fruit stored at low temperature for 1 month, but not in fruit stored at room temperature. Repeated 1-MCP treatments (twice a week) failed to inhibit the changes that occurred in low temperature storage. These observations indicate that low temperature modulates the ripening of kiwifruit in an ethylene-independent manner, suggesting that kiwifruit ripening is inducible by either ethylene or low temperature signals.