Cargando…

Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo

The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Schuster, K, Zheng, J, Arbini, A A, Zhang, C C, Scaglioni, P P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255254/
https://www.ncbi.nlm.nih.gov/pubmed/22829195
http://dx.doi.org/10.1038/bcj.2011.30
Descripción
Sumario:The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as drug intolerance, inability to universally eradicate the disease and emergence of BCR/ABL drug-resistant mutants. To overcome these limitations, we tested whether inhibition of the PI3K/target of rapamycin (mTOR) signaling pathway has antileukemic effect in primary hematopoietic stem cells and BA/F3 cells expressing the BCR/ABL oncoprotein. We determined that dual inhibition of PI3K/mTOR causes growth arrest and apoptosis leading to profound antileukemic effects both in vitro and in vivo. We also established that pharmacologic inhibition of the mTORC1/mTORC2 complexes is sufficient to cause these antileukemic effects. Our results support the development of inhibitors of the mTORC1/2 complexes for the therapy of leukemias that either express BCR/ABL or display deregulation of the PI3K/mTOR signaling pathway.