Cargando…
Improving signal-to-noise ratio of structured light microscopy based on photon reassignment
In this paper, we report a method for 3D visualization of a biological specimen utilizing a structured light wide-field microscopic imaging system. This method improves on existing structured light imaging modalities by reassigning fluorescence photons generated from off-focal plane excitation, impr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255338/ https://www.ncbi.nlm.nih.gov/pubmed/22254180 http://dx.doi.org/10.1364/BOE.3.000206 |
Sumario: | In this paper, we report a method for 3D visualization of a biological specimen utilizing a structured light wide-field microscopic imaging system. This method improves on existing structured light imaging modalities by reassigning fluorescence photons generated from off-focal plane excitation, improving in-focus signal strength. Utilizing a maximum likelihood approach, we identify the most likely fluorophore distribution in 3D that will produce the observed image stacks under structured and uniform illumination using an iterative maximization algorithm. Our results show the optical sectioning capability of tissue specimens while mostly preserving image stack photon count, which is usually not achievable with other existing structured light imaging methods. |
---|