Cargando…
Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle
Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether st...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256189/ https://www.ncbi.nlm.nih.gov/pubmed/22253772 http://dx.doi.org/10.1371/journal.pone.0029760 |
_version_ | 1782221051236712448 |
---|---|
author | Valero, M. Carmen Huntsman, Heather D. Liu, Jianming Zou, Kai Boppart, Marni D. |
author_facet | Valero, M. Carmen Huntsman, Heather D. Liu, Jianming Zou, Kai Boppart, Marni D. |
author_sort | Valero, M. Carmen |
collection | PubMed |
description | Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45(-)) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1(+)CD45(−) stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1(+) cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1(+)CD45(−) cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7(+) cells and facilitated formation of eMHC(+)DiI(−) fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy. |
format | Online Article Text |
id | pubmed-3256189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32561892012-01-17 Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle Valero, M. Carmen Huntsman, Heather D. Liu, Jianming Zou, Kai Boppart, Marni D. PLoS One Research Article Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45(-)) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1(+)CD45(−) stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1(+) cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1(+)CD45(−) cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7(+) cells and facilitated formation of eMHC(+)DiI(−) fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy. Public Library of Science 2012-01-11 /pmc/articles/PMC3256189/ /pubmed/22253772 http://dx.doi.org/10.1371/journal.pone.0029760 Text en Valero et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Valero, M. Carmen Huntsman, Heather D. Liu, Jianming Zou, Kai Boppart, Marni D. Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle |
title | Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle |
title_full | Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle |
title_fullStr | Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle |
title_full_unstemmed | Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle |
title_short | Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle |
title_sort | eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256189/ https://www.ncbi.nlm.nih.gov/pubmed/22253772 http://dx.doi.org/10.1371/journal.pone.0029760 |
work_keys_str_mv | AT valeromcarmen eccentricexercisefacilitatesmesenchymalstemcellappearanceinskeletalmuscle AT huntsmanheatherd eccentricexercisefacilitatesmesenchymalstemcellappearanceinskeletalmuscle AT liujianming eccentricexercisefacilitatesmesenchymalstemcellappearanceinskeletalmuscle AT zoukai eccentricexercisefacilitatesmesenchymalstemcellappearanceinskeletalmuscle AT boppartmarnid eccentricexercisefacilitatesmesenchymalstemcellappearanceinskeletalmuscle |