Cargando…

Seasonal Variation in the Hepatoproteome of the Dehydrationand Freeze-Tolerant Wood Frog, Rana sylvatica

Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC) in combination with tandem mass spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiss, Andor J., Muir, Timothy J., Lee, Richard E., Costanzo, Jon P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257077/
https://www.ncbi.nlm.nih.gov/pubmed/22272080
http://dx.doi.org/10.3390/ijms12128406
Descripción
Sumario:Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC) in combination with tandem mass spectrometry (MS/MS) quantitative isobaric (iTRAQ™) peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica), a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. They also exhibited altered levels of certain metabolic enzymes that participate in the biochemical reorganization associated with aphagia and reliance on energy reserves, as well as the freezing mobilization and post-thaw recovery of glucose, an important cryoprotective solute in freezing adaptation.